2019-2020学年高中数学人教A版必修一作业:1.3.1.1 函数的单调性 含解析.doc_第1页
2019-2020学年高中数学人教A版必修一作业:1.3.1.1 函数的单调性 含解析.doc_第2页
2019-2020学年高中数学人教A版必修一作业:1.3.1.1 函数的单调性 含解析.doc_第3页
2019-2020学年高中数学人教A版必修一作业:1.3.1.1 函数的单调性 含解析.doc_第4页
2019-2020学年高中数学人教A版必修一作业:1.3.1.1 函数的单调性 含解析.doc_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

教学资料范本2019-2020学年高中数学人教A版必修一作业:1.3.1.1 函数的单调性 含解析编 辑:_时 间:_基础巩固(25分钟,60分)一、选择题(每小题5分,共25分)1定义在R上的函数f(x)对任意两个不相等的实数a,b,总有0,则必有()A函数f(x)先增后减Bf(x)是R上的增函数C函数f(x)先减后增 D函数f(x)是R上的减函数解析:由0知,当ab时,f(a)f(b);当ab时,f(a)f(b),所以函数f(x)是R上的增函数答案:B2下列函数中,在(0,2)上为增函数的是()Ay3x2 ByCyx24x5 Dy3x28x10解析:显然A、B两项在(0,2)上为减函数,排除;对C项,函数在(,2)上为减函数,也不符合题意;对D项,函数在上为增函数,所以在(0,2)上也为增函数,故选D.答案:D3在下列函数f(x)中,满足对任意x1,x2(0,),当x1f(x2)的是()Af(x)x2 Bf(x)Cf(x)|x| Df(x)2x1解析:因为对任意x1,x2(0,),当x1f(x2),所以函数f(x)在(0,)上是减函数,A,C,D在(0,)上都为增函数,B在(0,)上为减函数答案:B4函数f(x)x|x2|的增区间是()A(,1 B2,)C(,1,2,) D(,)解析:f(x)x|x2|作出f(x)简图如下:由图象可知f(x)的增区间是(,1,2,)答案:C5函数yf(x)在R上为增函数,且f(2m)f(m9),则实数m的取值范围是()A(,3) B(0,)C(3,) D(,3)(3,)解析:因为函数yf(x)在R上为增函数,且f(2m)f(m9),所以2mm9,即m3.答案:C二、填空题(每小题5分,共15分)6函数f(x)(x2)21的单调递减区间为_解析:函数f(x)(x2)21的图象开口向下,对称轴为直线x2,在对称轴右侧函数单调递减,所以函数f(x)(x2)21的单调递减区间为2,)答案:2,)7若f(x)在R上是单调递减的,且f(x2)3,解得x5.答案:(5,)8函数y|x24x|的单调减区间为_解析:画出函数y|x24x|的图象,由图象得单调减区间为:(,0,2,4答案:(,0,2,4三、解答题(每小题10分,共20分)9判断并证明函数f(x)1在(0,)上的单调性解析:函数f(x)1在(0,)上是增函数证明如下:设x1,x2是(0,)上的任意两个实数,且x10,又由x1x2,得x1x20,于是f(x1)f(x2)0,即f(x1)f(x2),f(x)1在(0,)上是增函数10作出函数f(x)的图象,并指出函数的单调区间解析:f(x)的图象如图所示由图象可知:函数的单调减区间为(,1和(1,2;单调递增区间为(2,)能力提升(20分钟,40分)11若函数f(x)的定义域为(0,),且满足f(1)f(2)f(3),则函数f(x)在(0,)上()A是增函数 B是减函数C先增后减 D单调性不能确定解析:函数单调性的定义突出了x1,x2的任意性,仅凭区间内有限个函数值的关系,不能作为判断函数单调性的依据,A,B,C错误,D正确答案:D12如果二次函数f(x)x2(a1)x5在区间上是增函数,则实数a的取值范围为_解析:函数f(x)x2(a1)x5的对称轴为x且在区间上是增函数,即a2.答案:(,213画出函数yx22|x|1的图象并写出函数的单调区间解析:y即y函数的大致图象如图所示,单调增区间为(,1,0,1,单调减区间为1,0,1,)14已知f(x)是定义在1,1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论