2019版高考数学复习专题七解析几何专题对点练22直线与圆及圆锥曲线文.docx_第1页
2019版高考数学复习专题七解析几何专题对点练22直线与圆及圆锥曲线文.docx_第2页
2019版高考数学复习专题七解析几何专题对点练22直线与圆及圆锥曲线文.docx_第3页
2019版高考数学复习专题七解析几何专题对点练22直线与圆及圆锥曲线文.docx_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题对点练22直线与圆及圆锥曲线1.设A,B为曲线C:y=上两点,A与B的横坐标之和为4.(1)求直线AB的斜率;(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AMBM,求直线AB的方程.2.(2018全国,文20)设抛物线C:y2=4x的焦点为F,过F且斜率为k(k0)的直线l与C交于A,B两点,|AB|=8.(1)求l的方程.(2)求过点A,B且与C的准线相切的圆的方程.3.在平面直角坐标系xOy中,已知圆O1:(x+1)2+y2=1和O2:(x-1)2+y2=9,动圆P与圆O1外切,与圆O2内切.(1)求圆心P的轨迹E的方程;(2)过A(-2,0)作两条互相垂直的直线l1,l2分别交曲线E于M,N两点,设l1的斜率为k(k0),AMN的面积为S,求的取值范围.4.在平面直角坐标系xOy中,以坐标原点O为圆心的圆与直线x-y=4相切.(1)求圆O的方程;(2)若圆O上有两点M,N关于直线x+2y=0对称,且|MN|=2,求直线MN的方程;(3)圆O与x轴相交于A,B两点,圆内的动点P使|PA|,|PO|,|PB|成等比数列,求的取值范围.5.已知点N(-1,0),F(1,0)为平面直角坐标系内两定点,点M是以N为圆心,4为半径的圆上任意一点,线段MF的垂直平分线交MN于点R.(1)点R的轨迹为曲线E,求曲线E的方程;(2)抛物线C的顶点在坐标原点,F为其焦点,过点F的直线l与抛物线C交于A,B两点,与曲线E交于P,Q两点,请问:是否存在直线l使A,F,Q是线段PB的四等分点?若存在,求出直线l的方程;若不存在,请说明理由.6.(2018天津,文19)设椭圆=1(ab0)的右顶点为A,上顶点为B.已知椭圆的离心率为,|AB|=.(1)求椭圆的方程;(2)设直线l:y=kx(k0,即m-1时,x1,2=22.从而|AB|=|x1-x2|=4.由题设知|AB|=2|MN|,即4=2(m+1),解得m=7.所以直线AB的方程为y=x+7.2.解 (1)由题意得F(1,0),l的方程为y=k(x-1)(k0).设A(x1,y1),B(x2,y2).由得k2x2-(2k2+4)x+k2=0.=16k2+160,故x1+x2=.所以|AB|=|AF|+|BF|=(x1+1)+(x2+1)=;由题设知=8,解得k=-1(舍去),k=1.因此l的方程为y=x-1.(2)由(1)得AB的中点坐标为(3,2),所以AB的垂直平分线方程为y-2=-(x-3),即y=-x+5.设所求圆的圆心坐标为(x0,y0),则解得因此所求圆的方程为(x-3)2+(y-2)2=16或(x-11)2+(y+6)2=144.3.解 (1)设动圆P的半径为r,则|PO1|=r+1,|PO2|=3-r,所以|PO1|+|PO2|=4,所以P的轨迹为椭圆,2a=4,2c=2,所以a=2,c=1,b=,所以椭圆的方程为=1(x-2).(2)设点M坐标为(x0,y0),直线l1的方程为y=k(x+2),代入=1,可得(3+4k2)x2+16k2x+16k2-12=0.A(-2,0)在椭圆=1上,x0(-2)=,则x0=,|AM|=.同理|AN|=.所以S=|AM|AN|=.,令k2+1=t1,所以(0,6).4.解 (1)依题意,圆O的半径r等于原点O到直线x-y=4的距离,即r=2.所以圆O的方程为x2+y2=4.(2)由题意,可设直线MN的方程为2x-y+m=0.则圆心O到直线MN的距离d=,所以+()2=22,即m=.所以直线MN的方程为2x-y+=0或2x-y-=0.(3)设P(x,y),由题意得A(-2,0),B(2,0).由|PA|,|PO|,|PB|成等比数列,得=x2+y2,即x2-y2=2.因为=(-2-x,-y)(2-x,-y)=2(y2-1).由于点P在圆O内,故由此得y2|NF|,R的轨迹是以N,F为焦点的椭圆,a=2,c=1,b=,曲线E的方程为=1;(2)抛物线C的顶点在坐标原点,F为其焦点,抛物线的方程为y2=4x,假设存在直线l使A,F,Q是线段PB的四等分点,则|AF|=|FB|.直线l斜率显然存在,设方程为y=k(x-1)(k0),设A(x1,y1),B(x2,y2),则直线代入抛物线方程,整理可得ky2-4y-4k=0,y1+y2=,y1y2=-4,|AF|=|FB|,=-2,由解得k=2.k=2时,直线l的方程为y=2(x-1),解得A,B(2,2).直线与椭圆方程联立解得P,A.yB2yQ,Q不是FB的中点,即A,F,Q不是线段PB的四等分点.同理可得k=-2时,A,F,Q不是线段PB的四等分点,不存在直线l使A,F,Q是线段PB的四等分点.6.解 (1)设椭圆的焦距为2c,由已知有.又由a2=b2+c2,可得2a=3b.由|AB|=,从而a=3,b=2.所以,椭圆的方程为=1.(2)设点P的坐标为(x1,y1),点M的坐标为(x2,y2),由题意,x2x10,点Q的坐标为(-x1,-y1).由BPM的面积是BPQ面积的2倍,可得|PM|=2|PQ|,从而x2-x1=2x1-(-x1),即x2=5x1.易知直线AB的方程为2x+3y=6,由方程组消去y,可得x2=.由方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论