




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 外文翻译 毕业设计题目 : 中厚板板形仪长度检测系统设计 原文 1: Nonmechanical scanning laser Doppler velocimeter 译文 1: 非机械破碎的扫描激光多普勒测速仪 原文 2: Theory for plates of medium thickness 译文 2: 中厚板理论 9 译文 1 非机械性激光多普勒测速仪的二维速度测量 浩一丸 *和孝弘羽田孜 1. 绪论 激光多普勒测速仪( LDV)已经被广泛地使用在许多研究和工业 生产中用来来测量物体、流体的速度,因为其无创性,精细的空间的分辨率和线性响应。在光学机构中,各种用于机械扫描测定位置的技术已经成熟运用 1-6。在实际应用中,具有结构紧凑,易于来处理特点的 LDV 传感器探头是可取的。如果打算应用常规扫描技术的一个 LDV 探针,那么它在探头内的使用的移动机构是必不可少的。然而,探头内的移动机构可以很容易地因为对齐或从机械冲击而损坏,探头也难以小型化。 为了克服这些缺点,在常规的扫描技术的基础上,作者提出了没有任何移动的机制的探针扫描 7-10。在这些 LDVS 中,该扫描功能是可 以通过改变输入到探头的光的波长和衍射光栅扫描光束,和衍射光栅扫描光束,而不是使用移动机构都包含在探头。然而,扫描的方向被限制在一个轴向方向,即,平行于光轴的方向轴,或横向方向, 在这些 LDVS 的光轴垂直的方向上。 测量位置为流量的横截面上的一个二维扫描的液体流的速度分布的测量的在许多应用中是可取的。已报道一个 LDV 测量接收光学系统中使用的塑料光纤阵列的多个位置的速度 11,12, 虽然测量位置在一维分布并且在一个机械的阶段,却已被用于二维速度测量。 在本文中, 我们提出了一个非机械的,可以在二维平面上的横截面平面 垂直于流动方向的扫描,没有任何移动机构在其探头的扫描 LDV。 结合波长的变化,以及探头的光纤阵列输入端口的变化用于执行测量位置的二维扫描。我将分别从 理论和实验证明这种扫描功能。 2. 原理 A. 二维扫描的概念 建议的非机械二维扫描 LDV 的概念示于图 1 中 。如图所示, LDV 包括的传感器探头包括一个衍射光栅和主体,该主体包括一可调谐激光器和光开关。在主体和探针连接的光纤阵列和电缆。从可调谐激光器的光束由光开关激发, 通过光纤阵列中的纤维,然后被输入到传感器探头。在探头中,从其中一个光束光纤阵列端口进入的光束进过校直,入射 到衍射光栅。当入射角度为0 度时,光束对称衍射。 该第一和第一级衍射光束被反射镜反射,并相互交叉在测量位置。 最佳 10 的散射光束的拍频信号来自发光二极管。信号随后被转移在主体中,信号分析器随后计算出结果。 在这种结构中,可调谐激光器和衍射光栅的光开关和光纤阵列相结合用于在两个维度扫描测量位置。从测量位置沿轴向扫描,通过改变输入得到探头的光的波长。这和我们已经报道的方法相类似 7。光栅的衍射角随波长变化。在测量点位置可以进行扫描。一个横向扫描功能是通过以下方式获得 不断变化的 的光纤阵列 光开关 的端口。 横向 测量的位置依赖于 输入位置的光束探头。因此,当在横向方向上移动 了 光束输入的位置时,测量位置也常在在横向方向上移动。 是因为 可调谐激光器和光开关是可以分开的探针,探针可保持简单,可靠。 图 1 参考文献 1 GR 格兰特和 KL 奥尔洛夫,“双色双光束后向散射激光多普勒测速仪,” APPL。 OPT。 12, 2913 年至2916 年( 1973 年)。 2 , Y. Y. T.西川,北谷,米田野, T.山田,“空间相关测量的附加喷气机通过新的扫描激光多普勒测速仪用衍射光栅,”第七次研讨会对湍流( 1981 年),第 380-389 页。 3 B. F.德斯特,莱曼和 C 特罗佩亚,“激光多普勒流场快速扫描系统,”牧师科学。仪器和设备。 52,1676 至 1681 年( 1981 年)。 4 P.斯利拉姆, S. Hanagud, J.克雷格, NM Komerath,“扫描激光多普勒流速剖面技术检测移动表面上” ; OPT。 29 日, 2409 年至 2417 年( 1990 年)。 5 EB 李, AK 小芹,和世界青年园“在冷轧变形区的速度分布测量的扫描 LDV,”选件。激光工程。 35,41-49( 2001)。 6 M. Tirabassi 和 SJ Rothberg,“扫描 LDV 楔形棱镜,选件。激光工程。 47, 454-460( 2009)。 7 K.丸“,轴向扫描激光多普勒测速仪采用波长的变化不动,在传感器探测机制,” OPT。快递 19, 5960-5969( 2011)。 8 K.丸, T.藤原, R.池内,“非机械性的横向扫描激光多普勒测速仪采用波长变化,” APPL。 OPT。 50,6121-6127( 2011)。 9丸和 T.羽田孜,“非机械轴向扫描激光多普勒测速仪与方向的歧视,” APPL。 OPT。 51, 4783-4787( 2012)。 11 10 K.丸“,非机械双轴扫描激光多普勒测速仪,” IEEE 参议员, J. 12 日, 2648 年至 2652 年( 2012 年)。 11 T. Hachiga, N.古都, J.观松, K.菱田, M.熊田,“发展的多点的 LDV 通过使用半导体激光器的基于FFT 的多信道信号的处理,用” Exp。流体 24, 70-76( 1998)。 12 , K. D.小林, S. T. Andoh H.石田, H.白河,秋口,上山, Y.仓石, T. Hachiga,“微血管三维成像技术使用的多点激光 多普勒测速仪“, J.;物理 。 106, 054701( 2009)。 13 JE 哈维和的 CL Vernold“的方向余弦空间衍射光栅的行为的描述,” APPL。 OPT。 37, 8158-8160( 1998)。 14 M. Pascolini, S. Bonora, A. Giglia, N. Mahne, S. Nannarone, L. Poletto,“在一个圆锥形的衍射光栅安装一个极端的紫外线时间延迟补偿单色” ; OPT。 45, 3253-3262( 2006)。 15 H.-E.阿尔布雷希特鲍里斯, N.达马施克,和 C.特罗佩亚 ,激光多普勒和相位多普勒测量技术(施普林格, 2003 年),第 7.2 节。 16 , Y., Y.泷田华启青木, A. Sugama, S.青木, H.奥纳卡,“ 4 4 光突发交换使用 PLZT 光束偏转器的高速交换子系统与 VOA( 10 微秒) “在光纤通讯研讨会及展览会和全国光纤工程师会议,技术精华( CD)(美国光学学会, 2006 年),纸 OFJ7。 17 IM Soganci, T.种村, KA威廉姆斯, N. Calabretta, T. de Vries 先生, E. Smalbrugge, MK 斯密特, HJS Dorren 和华野,“高速 1 6 的 InP 单片集成光开关,”诉讼 2009 年第 35 届欧洲光通信会议( ECOC 09)( IEEE 2009), 本文 1.2.1。 18 K.梨本, D. Kudzuma, H.汉,“高速开关和过滤使用 PLZT 波导器件,”在 15 日光电子和通信会议( OECC 2010)( IEEE 2010),纸 8E1-1 的诉讼。 19 SH 云, C. Boudoux, GJ Tearney,鲍马,的“掠高速波长的半导体激光与一个 polygonscanner basedwavelength 过滤器,”选项。快报。 28, 1981-1983( 2003)。 20 , H. K.加藤, R. N.藤原吉村,石井, F.卡诺, Y.川口, Y.近藤, K. Ohbayashi,并 H. Oohashi,“ 140 nm 的准连续快速扫描使用 SSG-DBR 激光器,“ IEEE 光子。技术快报。 20, 1015-1017( 2008)。 12 原文 2 THEORY FOR PLATES OF MEDIUM THICKNESS (K TEORII PLASTIN SREDNEI TOLSACHINY) A theory of elastic isotropic plates of constant thickness is constructed without assumptions about the nature of the deformations of the transverse linear elements. The stresses xx, xy, yy are expanded in a series of Legendre polynomials Pk (2z/h). The remaining stresses are found from equilibrium equations after application of Castiglianos principle. The expansion of unknown quantities in Legendre polynomials was applied to the shell theory by Cicala I. But he made use of the principle of virtual displacements, which does not reveal all the advantages of these series over power series. Application of the Castigliano principle gives the possibility of using these advantages effectively with the result that expansion in Legendre polynomials permits a separation of those parts of the stress for which the principal vector and moment is equal to zero. Because of this circumstance the boundary condition is formulated in the most convenient form for application of the St. Venant principle. By neglect of terms of the order of (h/a)* by comparison with unity (h, plate thickness, a, plate width) one may obtain the equations of classical plate theory from those of the present theory. Conservation of these terms leads to exact equations which contain other terms besides those in 2-41. 1. The middle surface of the plate is described by a Cartesian rectangular xyz coordinate system. Besides the xyz coordinates we introduce the nondimensional coordinates The stresses xx, xy, yy in the plate are represented in the form of Legendre polynomials in the coordinate Here and from now on the symbol (xy) signifies that analogous relations for other quantities are obtained by the interchange of x and y. 13 By virtue of the orthogonality of the Legendre polynomials, Txx, . . . .Myy have the significance of forces and moments, and Pk() kxx . . . . self-equilibrating stresses through the plate thickness. For simplicity we consider the surfaces z = h/z of the plate to be loaded by only continuously distributed normal loads Substitution of the Expressions (1.1) into the equilibrium equations of the theory of elasticity and integration with respect to z using (1.2) gives expressions for the remaining stress components (mass forces omitted) and the equilibrium equations for forces and moments The quantities Vx and Vy represent shear forces and Akx, Aky determine self-equilibrating shear forces through the thickness. It follows that Expressions (1.1) and (1.3) satisfy the equilibrium equations of the theory of elasticity and the boundary conditions (1.2), if forces and moments are introduced therein satisfying the equilibrium equations (1.4) of plate theory. For determination of the quantities Txx, Mxx , kxx. we make use of the Castigliano principle; the problem leads to an extremum condition since the forces and moments must be subject to Equations 14 (1.4). As usual, we use the method of Lagrangean undetermined multipliers. We insert the left-hand sides of Equations (1.4) inside the integral for potential energy of the plate, multiplying each by an undetermined multiplier. As a result we obtain the functional Here u, v, , x ,y are Lagrangean multipliers. The double integral is taken in the middle surface of the plate. Formulas (1.1) and (1.3) for stresses are inserted into (1.6) and the variation of the functional is equated to zero. The variational equation will result in relations which must be satisfied in the middle surface of the plate. If only the first four terms are retained in the series (1.1) ( kxx = kxy = kyy = 0, k 4), these equations take the following form 15 In addition, on the contour of the region must hold. The quantities under the integral sign are components corresponding to vectors and tensors, referred to the external normal n and the tangent s of the contour. Quantities in the square brackets will 16 not be used and we shall not discuss them. The static and geometric (homogeneous) boundary conditions follow from Equation (1.12). Note that if only the first two terms in series (1.1) are retained, the plate theory of Reissner 4 is obtained. If, in addition, the stresses xx, xy, yy are neglected in the functional (1.6 ) the plate theory of Kirchoff is obtained. By consideration of the obtained equations it is easy to find that the problem of stress determination splits into two independent problems. The first problem consists in solving equations of the type of (1.7), (1.8) and the first of (1.4) with corresponding boundary conditions from (1.12), The second problem consists in solving equations of the type of (1.9), (l.l0), (l .l l), and the second equation of (1.4) with the corresponding boundary conditions. In the future we shall limit ourselves to the case where only the first four terms are retained in the series (1.1); (b = 2, 3). From the obtained system of equations one may derive another system for the determination of the self-equilibrating stresses, kxx, kxy, kyy through the thickness of the plate (excluding forces, moments and displacements appearing as Lagrangean multipliers). The coefficients for the derivatives of different series are small numbers, the smaller the higher ;he order of the derivative. In view of this, a more general solution for such a homogeneous system will be expressed by a rapidly varying function, and a particular solution is easily calculated with sufficient accuracy. It will also be determined during a study of the state of stress in the plate remote from the edge as a rapidly varying .part of the solution by virtue of the St. Venant principle (since knn, kns ,Akn at the edge of the plate determine stresses, self-equilibrating through the thickness) localized at the edge of the plate and decaying rapidly away from it. In this work on stress determination we have limited ourselves to consideration of a particular solution of the above equations not giving the state of stress localized at the edge of the plate. For this, terms of the order of (h/a)2 must be retained n the formulas or the stresses xx, xy, yy and terms of the order of (h/a)4 neglected by comparison with unity. 2. We consider the second problem. The shear forces and moments arising from the action of the surface forces (1.2) have the following orders 17 (assuming that the external loads are such that the order of the quantities considered does not reduce upon differentiation with respect to .). The particular solution of Equation (1.10) with an accuracy to terms of the order of (h/a)2 has the following form: We conclude from these equations, as well as from.(2.1) and (1.5), that the bracketed terms in (1.9) are as small by comparison with the left-hand side of (1.9) as (h/n)4 is by comparison with unity, and these terms must accordingly be rejected in the simplified system. The expressions obtained for moments Coincide with the formulas of Reissner 4 and Armbartsumian 2. These formulas would be obtained if the last term on the right in (1.11) were neglected. Therefore one must take The formulation of the edge problem coincides with the edge problem in the work of Reissner 4, but differs from the edge problem in the work of Ambartsumian 2. Thus, in the work of Reissner the edge condition is equivalent to and in the work of Ambartsumian to 18 Condition (2.5) is obtained by a variational method. The left-hand side has the significance of a generalized displacement, in which work of the moment Mnn is done. The left-hand side of (2.6) has no such significance. Therefore the edge condition (2.6) does not answer the requirement that the reaction of the support do no work, and it must be regarded as inconsistent. The result of this will be a nonselfconjugate edge problem. Thus, the edge problem in the present formulation agrees with the edge condition for plate bending of Reissner. The difference consists in the formulas from which stresses are calculated after finding the forces, moments and displacement w. Thus the stresses xx, xy, yy are determined from the formulas 19 in accordance with (l. l), (2.2) and (2.3). The first terms on the right-hand side give stresses as calculated from the classical theory of plates. The remaining terms give the corrections of the order of (h/a)* compared with unity. If terms P5 () 5xx , P5() 5xy, P5() 5xz, were retained in the series (l . l), then the corrections obtained would be of a still higher order than (h/a)2. In the Reissner plate theory the stresses are A comparison of Formulas (2.8) to (2.10) with those of (2.7) shows that certain terms are missing from the less exact formulas, terms having in general the same order as those already retained. The reason for this is that Reissner starts with a linear distribution of the stresses. xx, xy, yy through the thickness; other authors 2,3 introduced other simpifying assumptions with an unknown error in the determination of stresses and displacements. 3. We return to the problem of the momentless deformation of a plate. We assume that the stresses induced by forces applied at the edge of the plate all have the same order as the bending stresses (i.e. p(a/h)2); let q p The particular solution of Equation (1.8) with accuracy to terms in (h/a)2 compared with unity will be Considering that Txx, Tyy = ph(a/h)2 and referring to (1.5), we conclude that the bracketed terms in (1.7) are as small in comparison with the left-hand part of (1.7) as (h/al4 is compared with unity, and accordingly those terms must be omitted in the simplified system. We obtain These formulas are also found in 2, 3in which they determine the membrane stresses. In the present work .the stresses are given by the formulas 20 in agreement with (3.1) and (1.1). If the terms P4() 4xx , P4() 4xy, P4() 4yy, are retained in the series (1.11, then the corrections obtained will be of a higher order of smallness than (h/a)2 as compared to unity. BIBLIOGRAPHY 1.Cicala, Placido, Sulla teoria della parete sotile. Giorn. Genio ciuile 97, NOS. 4, 6, 9, 1959. 2.Ambartsumian, S. A. , Teoriia anizotropnykh obo lochek (Theory of Anisotropic She 1 Is). Fizmatgiz. 1961. 3.Mushtari, Kh. M., Teoriia izgiba plit srednei tolshchiny (Theory of bending of plates of medium thickness). IZV. Akad. Nauk SSSR, Mekhanika i Mashinostroenie NO. 2, 1959. 4.R.eissner, E., On the bending of elastic plates. J. Math. and Phys. Vol. 23, 1944. 21 译文 2 中 厚 板 理 论 波尼亚托夫斯基 一 种没有假设 横向 线性单元 变形 的性质的中等厚度板的理论 。 产生的应力xx,xy,yy扩展在一系列的 Legendre 多项式 。在运用卡式原则的平衡方程中发现剩余应力。 Cicala 将 Legendre 多项式中的的未知量的扩展应用到板壳理论。但他所使用的原则,虚位移,却不会显示这些系列的所有优点。 卡氏原则中的应用给出的可能性能有效地使用这些优点,其结果就是 Legendre 多
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 校车人员安全知识培训课件
- 校安头条安全知识培训课件
- 北戴河区法律知识培训课件
- 西部计划试题及答案
- 法警聘用制面试题及答案
- java语言赋值运算符面试题及答案
- 骨科医学面试题及答案
- 2025年黑龙江省龙东地区中考语文真题(含答案)
- 科二考试题及答案
- 重庆市人民调解员考试试题及答案
- 第2章 工业机器人的运动学基础《工业机器人》教学课件
- 多发性硬化症诊治护理
- 意识形态安全面临的挑战及对策
- 直播电商行业:直播电商供应链研究报告
- 《语文核心素养三年规划》课件
- 涉诈风险账户审查表
- 广东技工学校申报设立审批表
- 大干围码头地块概况
- 企业项目投资与融资模式
- 过锡炉(波峰焊)治具制作讲义课件
- 彩钢复合板生产项目环境影响报告表
评论
0/150
提交评论