(金融学专业论文)中国利率期限结构动态变化的宏观解释.pdf_第1页
(金融学专业论文)中国利率期限结构动态变化的宏观解释.pdf_第2页
(金融学专业论文)中国利率期限结构动态变化的宏观解释.pdf_第3页
(金融学专业论文)中国利率期限结构动态变化的宏观解释.pdf_第4页
(金融学专业论文)中国利率期限结构动态变化的宏观解释.pdf_第5页
已阅读5页,还剩53页未读 继续免费阅读

(金融学专业论文)中国利率期限结构动态变化的宏观解释.pdf.pdf 免费下载

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

摘要 摘要 利率是债券市场最重要的经济变量,而利率期限结构是资产定价、风险管理 和公共政策的基准。目前,对于利率期限结构的研究,国外已经有很多较为成熟 的理论,其中包括近3 0 年来基于随机过程的分析。不过这些文献多是用基于短 期利率的随机扩散模型来分析利率期限结构,而用宏观经济变量来解释期限结构 动态变化的文献则相对较少,国内更是廖廖无几。本文的目的是借鉴国内外已有 的研究经验,采用计量的方法来发掘影响中国利率期限结构变动的宏观因素。 本文首先在导论阐述研究利率期限结构的意义、背景、文章的内容框架、创 新与不足之处,接着介绍利率期限结构的相关理论。文章的重点放在第二章到第 四章。其中第二章阐述了利率期限结构的构造方法,并利用三次样条法构造了真 正的中国利率期限结构,随后用主成份分析法求利率期限结构变动的三个潜在因 子。第三章对可能影响利率期限结构变动的宏观变量进行集中处理:包括用适应 性预期模型求通货膨胀预期值;用h p 滤波求产出缺口,并将其作为经济周期的 替代变量。第四章使用了两个模型从不同的角度来刻画利率期限结构变动与宏观 经济变量的相依关系:首先是v a r 模型,本文用它来拟合潜在因子与宏观变量的 相互作用,重点阐述宏观变量的冲击对潜在因子的影响力度,从而间接地说明宏 观变量对期限结构变动的影响;其次本文构建了一个简单的状态空间模型,应用 k a l m a nf i i t e r 算法求出远端利率( 1 0 年期利率) 对通货膨胀预期和g d p 产出缺 口敏感性的动态变化。本文最后一部分为结论:在中国,通货膨胀预期对利率期 限结构的变动有较大的影响,而且这种影响远大于经济周期对后者的影响。 关键词:利率期限结构;实证研究;宏观解释 a b s t r a c t a b s t r a c t i n t e r e s tr a t ei st h em o s ti m p o r t a n t 自c t o rt h a tc o u l di n f l u e n c et h es t a b i l i t yo ft h eb o n d m a r k e t u n t i ln o w , t h e r ea r em a n ym a t u r et h e o r i e sa n dm o d e l sf o rt h er e s e a r c ho ft h et e r m s t r u c t u r eo fi n t e r e s tr a t e ,i n c l u d i n gt h ea n a l y s i sb a s e do i ls t o c h a s t i cp r o c e s s h o w e v e rt h e r e a l ef e w a n a l y s i s0 1 3 t h et e r ms m l c t u r eo fi n t e r e s tr a t e 五姗t h em a c r op e r s p e c t i v e i nc h i n a t h es i t u a t i o ni sw o r s es i n c et h e r ea l ef e w e rr e l e v a n tp a p e r si nt h i sf i e l d t h i sa r t i c l ew i l l a n a l y z et h em a c r of a c t o rw h i c ha f f e c tt h et e r ms t r u c t u r eo fi n t e r e s tr a t eb a s e do ns o m e p o p u l a rf o r e i g nr e s e a r c hm e t h o d s t h ei n t r o d u c t i o no ft h i sp a p e rp o i n t so u tt h ei m p l i c a t i o na n db a c k g r o u n do f 妇s t u d yo i l t h ei n t e r e s tr a t et e r ms t r u c t u r e ,a n dt h e ni n t r o d u c e sr e l e v a n tt h e o r i e sh o m ea n da b r o a d f r o m t h es e c o n dp a r t , i tt u r n st oe m p i r i c a ls t u d y , w h i c hc o n s t i t u t e st h r e ec h a p t e r s :t h ee s t i m a t i o no f t h ei n t e r e s tm t et e r ms t r t l c t u r e ,t h ep r e p a r a t i o no fm a c r ov a r i a b l e s d a t ag e n e r a t e df r o mt h e 砸班1 a ld a t aa n dt h em o d e lp a r a m e t e r se k i j m a t i o n i nd e t a i l ,t h i sp a p e ra d o p t st h e m e t h o d o l o g yo ff i t t i n gt h ed i s c o u n tf u n c t i o nb yt h r e et i m e sp o l y n o m i a ls p i n e sa n de m p l o y s p r i n c i p a lc o m p o n e n ta n a l y s i st of i g u r eo u tt h et h r e ep o t e n t i a lf a c t o r si n f l u e n c i n gt h ed y l 倒c s o ft h et e r ms t r u c t u r ei nt h es e c o n dc h a p t e r , u s e sti pf i l t e rt oe s t i m a t et h eo u t p u tg a po fg d p a n dt h ea d a p t i v ee x p e c t a t i o nm o d e lf o ri n l 蜥o ne x p e c t a t i o ni nt h et h i r dc h a p t e r i nt h ef o r t h c h a p t e r , t h i sp a p e rw i e st of i g u r eo u tt h er e l a t i o n s h i pb e t w e e nt h ep o t e n t i a l 龟i 姗a n dm a c r o v a r i a b l e st h r o u g hav a rm o d e l , a n df o c u s e so nt h ee x t e n tt ow h i c ht h ep o t e n f i a lf a c t o r sa r e a f f e a e db ym a c mv a r i a b l e s t h e r e b yi 1 1 t m - a t h a gt h ee f f e c t so fm a c r ov a r i a b l e so nt h e d y n a m i c so ft h et e r ms t r u c t u r ei n d i r e c t l y f u r t h e r m o r e ,as i m p l es t a t es p a c em o d e li s c o n s l r d c t e di n t h i sp a p e r ,a n dk a l m a nf i l t e rm e t h o di sa p p l i e dt oe s t i m a t et h em o d e l p a r a m e t e r sw h i c hs t a n df o rm es e n s i t i v i t yo f l o n g - e n di n t e r e s tr a t e t oi n f l a t i o ne x p e c t a t i o na n d t h eo u t p u tg a po fg d p b o t hm o d e l sh a v er e a c h e ds u c hac o n c l u s i o nt h a tt h ei n f l a t i o n e x p e c t a t i o nh a sam o r es i g n i f i c a n te f f e c to nt h et e r ms t r u c t u r eo f i n t e r e s tr a t e ,a n dm u c hm o r e s i g n i f i c a n tt h a ne c o n o m i cc y c l ed o e s f r o mt h i sp o 硫o fv i e w , i nt h ep r o c e s so fm a k i n g p o l i c i e s ,p o l i c y - m a k e r ss h o u l dm a k ep r o p e re x p e c t a t i o nf o ri n f l a t i o nt ol e a dt h ee c o n o m yt oa g o o dr e s u l t k e yw o r d s :t e r ms t r u c t u r eo fi n t e r e s tr a t e ;e m p i r i c a ls t u d y ;m a c r oe x p l a n a t i o n 厦门大学学位论文原创性声明 兹呈交的学位论文,是本人在导师指导下独立完成的研究成果。 本人在论文写作中参考的其他个人或集体的研究成果,均在文中以明 确方式标明。本人依法享有和承担由此论文产生的权利和责任。 声明人( 签名) :讶欺穆 朋哗r 月九日 厦门大学学位论文著作权使用声明 本人完全了解厦门大学有关保留、使用学位论文的规定。厦门大 学有权保留并向国家主管部门或其指定机构送交论文的纸质版和电 子版,有权将学位论文用于非赢利目的的少量复制并允许论文进入学 校图书馆被查阅,有权将学位论文的内容编入有关数据库进行检索, 有权将学位论文的标题和摘要汇编出版。保密的学位论文在解密后适 用本规定。 本学位论文属于 1 、保密() ,在年解密后适用本授权书。 2 、不保密( 0 ( 请在以上相应括号内打“”) 储躲玖静 吼尹罗年n 彩日 翮签兹 导论 导论 第一节选题动机 利率期限结构是指在某个时点不同期限的零息票债券的利率的集合。因为 在零息票债券条件下,债券的到期收益率和利率相等,所以利率期限结构也可以 看作到期收益率的集合。利率期限结构是资产定价、金融产品设计、保值和风险 管理、套利以及投机等的基准,也是中央银行藉以控制短期利率变化以影响中长 期利率变化的传递机制的依据。利率期限结构的动态变化规律,一直是金融领域 基础性的研究问题之一,在中国不断深入的利率市场化改革中,研究利率期限结 构具有重要的理论意义和现实意义。 相对于经济改革和对外开放的整体步伐,我国利率市场化改革进展较慢,目 前尚未完全实现利率市场化,利率管制造成利率这重要的价格杠杆,在资源配 置方面的作用受到约束,利率结构也在一定程度上被扭曲。但是我国利率市场化 既是世界经济一体化的大势所趋,也是我国发展社会主义市场经济的必由之路。 近几年来,我国资金供求较为均衡、宏观经济形势较为稳定、通货膨胀率相对较 低,这是推行利率市场化的最佳时机。中国也没有错过这个时机,自1 9 9 6 年以来, 政府推出了一系列旨在推动利率市场化的相关政策,表1 列出了近年来我国政府 在推动利率市场化改革方面做出的努力。由表可见,我国的利率体制改革正逐步 向形成由市场资金供求关系决定各种利率水平的市场化利率体系这一目标迈进。 在我国推进利率市场化改革这一过程中,利率波动将变得日益频繁,因此,急需 进行有关利率期限结构和动态变化特征的深入研究,以便更加有效地管理利率风 险以及设计利率相关产品。我国债券市场发展在为利率期限结构的研究提供了重 要支持的同时,也迫切需要加强对该课题深入探讨,以适应其日益复杂的交易环 境。就目前的债券市场而言,已经能在很大程度上满足利率期限结构研究的要求, 能够为其提供较好的数据来源和理论验证的平台。自1 9 8 1 年恢复国债发行以来, 我国的债券市场从无到有,规模从d , n 大,债券品种、期限结构都有了比较丰富 的内涵,交易制度和交易者结构也有了长足的进展。同时,由于固定收益类产品 对利率的变化十分敏感,其定价机制和市场风险管理严重依赖于恰当的利率期限 结构的构造,因此随着我国债券市场的快速发展,以利率衍生品为主的债券新品 1 中阁利率期限结构动态变化的宏观解释 种将不断推出,交易方式也将逐渐多样化和复杂化,这将使得开展利率期限结构 的相关研究的重要性更加突出。 表l :推动利率市场化的政策 时间利率市场化政策 1 9 9 6 矩 1 9 9 6 年 放开了银行间同业拆借利率,开始了利率市场化的进程 财政部通过证券交易所市场平台实现了国债的市场化发行 1 9 9 7 年6 月银行债券市场正式启动,同时放开了债券市场的债券回购和现券交易利率 1 9 9 8 年9 月 放开了政策性银行金融债券市场化发行利率 1 9 9 9 年9 , 9国债在银行间债券市场利率招标发行 1 9 9 9 年1 0 月中国人民银行批准中资商业银行法人对中资保险公司法人试办五年期以上( 不含五年 期) 、3 0 0 0 万以上长期大额协议存款业务,利率水平由双方协商确定 2 0 0 2 年2 月和1 2 月协议存款试点的存款人范围扩大到全国社保基金理事会和已经完成养老保险个人账 户基金改革试点的省级社保经办机构 2 0 0 3 年以来央行连续三次扩火金融机构贷款利率浮动区间 2 0 0 3 年1 1 月小额外币存款利率下限放开 2 0 0 4 年l o 月人民银行放开金融机构贷款上限( 城乡信用社除外) 和存款利率下限,同时决定放开 l a t - 期以上小额外币存款利率 具体来说,在中国,研究利率期限结构的重要理论意义和现实意义,可归纳 为如下几点: 首先,它为中国资产定价提供一个坚实的理论依据。利率期限结构不仅在 债券( 包括政府债券和公司债券) 定价中起着基准作用,而且还给各衍生品特别 是固定收益衍生产品提供了定价基准( 如可转换债券就是典型的衍生金融产品) 它的定价依赖于对市场利率及其变动的准确估计。这些相关资产和衍生产品的定 价,都极大地依赖于市场利率动态模型。 其次,它可以促进中国资本市场的完善。一个完善的市场,应该是一个定 价合理、不存在套利机会的市场。利率期限结构反映了债券市场的“信息有效” 性,即市场是否存在套利机会。通过利率期限结构的准确动态估计,就可以为政 2 导论 府提供有关市场价格是否合理的信息,为减少市场套利、促进市场的完善提供指 导性的理论建议。 第三,市场利率动态模型的研究,可以为我国的利率市场化进程提供基准 利率的支持。在利率市场化改革的进程中,如何确定市场基准利率是一项十分重 要的基础性工作。利率市场化和关于利率期限结构及其应用的研究,是相互促进 的两个方面:利率市场化程度越高,利率受各种市场因素的影响就越大,利率就 具有更大的可变性,这时为了防范利率风险或是为了进行利率投机,对利率期限 结构及其应用的研究会更加受到重视,从而促进研究的进一步开展;反之,利率 期限结构在债券组合管理中的应用越广泛,则债券管理人对市场利率的反应就更 敏感,债券组合随市场利率变化而调整的频率就越高,这样市场利率就越能够反 映市场各方力量对比,就越市场化。因此,对利率期限结构及其应用的研究和利 率市场化程度密切相关,它以利率市场化为前提,同时,又有利于利率的进一步 市场化。对利率期限结构的研究在我国还处于初始阶段,这是由于我国的金融市 场的实际情况决定的,随着我国利率市场化步伐的加快,这些研究将会受到更多 的关注。 第四,利率期限结构是中央银行控制短期利率变化,以影响长期利率变化 的重要参照。在市场利率体制下,货币当局只能控制短期利率,而影响经济实体 的是长期利率,只有长期利率与短期利率之间的关系稳定,才能保证货币政策当 局,能够控制长期利率进而影响经济运行。因此,研究动态利率期限结构,可以 为央行制定合理适时的利率政策,引导投资走向,并提供政策建议。 第五,利率风险是投资者面临的一个重要风险,通过对利率期限结构的动 态估计,就可以对未来利率变动进行一个比较有效的预测,从而为投资者的保值 和风险管理提供有用的信息。 第二节国内外研究现状 利率是债券市场的关键变量,而利率期限结构则是资产定价、投资决策、公 共政策的基准,因此利率期限结构一直是国内外学者研究的焦点,相关研究也不 断深入,从利率期限结构的传统假设到利率期限结构的动态模型,该领域的成就 不断翻新。其中利率动态模型因其多变性和灵活性而对揭示利率期限结构的动态 中国利率期限结构动态变化的宏观解释 特征具有重要意义,并且因此而吸引了一大批学者加入这方面的研究。他们陆续 推出自己的利率模型,_ 女l :i v a s i c e k + 、c m 、h o l e e 、b d t 等模型,很多经典 的利率模型甚至已经被业界广为应用。根据这些模型的推导过程可将它们分为均 衡模型和无套利模型。这些模型有一个共同的特征,即它们主要从微观角度和结 构角度出发研究利率期限结构的特征,而对一些来自政策或者宏观因素的扰动所 产生的作用没有给出具体的经验分析。后续的模型开始用潜在因子来解释利率期 限结构的动态变化,女1 1 l i t t e r m a n t f f l s c h e i n k m a n ( 1 9 9 1 ) 2 3 将三个潜在因子称为水平 因子( 1 e v e l ) 。斜度因子( s l o p ) 和曲度因子( c u r v a t u r e ) ,但他们并没有给出这些因子的 宏观内涵。而v a r 模型的引入则能很好地将利率期限结构和宏观因子联系起来, e s t r e l l a 个- 和m i s h k i n ( 1 9 9 7 1 1 3 】,e v a n s t g l m a r s h a l l ( 1 9 9 8 ) 1 1 4 】等都做了相关的尝试。e v a n s 和m a r s h a l l ( 1 9 9 8 ) l m 】通过撒的脉冲响应函数发现利率期限结构的水平因子与经 济冲击有很大相关性。a n d r e w ( 2 - - , 2 1 更进一步地,将无套利条件引入v a r 模型 中,研究发现宏观因子的冲击可以解释利率期限结构变动的比例高达8 5 ,并且 主要解释短期和长期期限利率的变化。h a n s ( 2 0 0 6 ) i n 6 1 又在a n d r e w ( 2 0 0 2 ) 口】的基础 上将宏观因子的长期预期值纳入分析框架内,得出了更精细的结论:水平因子与 通胀预期相关,斜度因子与经济周期相关,而曲度因子则与货币政策相关。 关于利率期限结构动态变化的宏观解释目前国内的研究还较少,比较突出的 是刘金全等( 2 0 0 7 ) 4 4 1 ,他们在v a r 的分析框架下研究利率期限结构与宏观经济 因素的动态相依性,并且得出了有益的结论:宏观经济冲击只对收益曲线的截距 ( 等同于前文提到的“水平因子”) 具有显著影响,而对斜度因子和曲度因子影 响微弱。不过他们的研究所用数据( 银行间同业拆借利率) 有别于国债市场,还 不足以反映真正债市的利率期限结构;此外,他们求解利率期限结构潜在因子的 方法也显得较为粗糙并且非主流方法。本文目的是借鉴国内外已有的研究经验, 对中国的利率期限结构的动态变化进行宏观解释。 可参考v a s i c e k ,o ,a ne q u i l i b r i u mc h a r a c t e r i z a t i o no f t h et e r ms t r u c t u r e 阴j o u r n a lo ff i n a n c i a i e c o n o m i c s ,l9 7 7 ,( 5 ) :18 8 罾n j 。参考c o x , j o h nc j o n a t h a ne i n g e r s o l la n ds t e p h e na r o s s at h e o r yo f t h et e r ms t r u c t u r eo f i n t e r e s tr a t e s e c o n o m e t r i c a , 5 3 ,1 9 8 5 :3 8 5 - 4 0 7 可参考h otsy l e es - b t e r ms t r u c t u r em o v e m e n t sa n dp r i c i n go fi n t e r e s tr a t ec l a i m i n g s 叨 j o u m a lo f f i n a n c e ,4 l ( 5 ) ,1 9 8 6 :1 0 1 1 1 0 2 9 刚参考b l a c kf ,d e r m a ne ,t o yw ao n e - f a c t o rm o d e lo fi n t e r e s tr a t e sa n di t sa p p l i c a t i o nt ot r e a s u r y b o n do p t i o n s j f i n a n c i a la n a l y s t sj o u r n a l ,19 9 0 ,( 4 6 ) :3 3 3 9 4 导论 第三节本文的研究方法和篇章结构 本文主要借鉴a n d r e w ( 2 0 0 3 ) 2 1 、h a n s ( 2 0 0 6 ) 1 6 1 和刘金全等( 2 0 0 7 ) 晔1 的研究, 结合定性分析和定量分析,辅以丰富的数据和图表,并用计量方法对中国利率期 限结构动态变化做出宏观解释。本文的篇章结构安排如下: 导论。简要分析了本文选题背景、研究的目的和意义以及研究内容与技术 方法。 第一章,利率期限结构的文献综述。将利率期限结构的理论、模型分为传 统和现代两部分,传统的利率期限结构,即通常所说的利率期限结构假设,主要 有预期假设、流动性偏好假设和市场分割假设三种;利率期限的现代理论按模型 推导过程,可分为均衡模型和无套利模型;为了突出本文的重点,在该部分第三 节还单独介绍了几个新近的模型,这些模型在如何用宏观经济变量解释利率行为 上做了不少尝试。 第二章,利率期限结构的构造,是对利率行为进行研究的前提。该部分首 先介绍了利率期限结构静态估计的相关方法,接着利用中国的债券数据用三次样 条法,估计了中国的利率期限结构,为后续研究做了铺垫,最后用主成份分析法 提取利率期限结构变动的三个主成份,他们分别是水平因子( 1 e v e l ) 、斜度因子 ( s l o p ) 、曲度因子( c u r v a t u r e ) 。 第三章,求解影响利率期限结构变动的潜在宏观变量。以往的利率动态模 型几乎无一例外地从短期利率出发,主要用短期利率的变动来解释利率期限结构 的变动,实际上国内外的众多文献显示:宏观经济变量也能在很大程度上解释其 变化。本文借鉴h a j l s ( 2 0 0 6 ) 【1 6 1 的文章,寻求通胀预期和经济周期对利率期限结构 动态变化的解释,在该部分中,首先用适应性预期模型来刻画通胀预期的路径,; 其次用h p 滤波求解g d p 产出缺口。 第四章,本章是全文的核心,采用了向量自回归模型( 娘) 和状态空间 模型( s t a t es p a c em o d e l ) ,刻画宏观经济变量对利率期限结构变动的影响程度和 影响方向,两模型都从动态的观点来反应变量间的相依关系,但前者侧重于未来 效应,而后者则主要用来刻画历史的相依关系。具体地说,本章将借助v a r 模型 寻求宏观变量的变动对利率期限结构变动的冲击效应和这个效应在将来的延续 时间,而本章引入状态空间模型则是为了刻画某期限利率对宏观经济变量的历史 s 中国利率期限结构动态变化的宏观解释 相依性,或者说是期限利率对宏观变量的动态敏感度。从实证的结果看,经济周 期对利率期限结构的变动影响并不显著,而通货膨胀预期对利率期限结构的变动 的重要影响,则在两个不同的模型得到了相互印证。 结语。这一章对前面的实证做总结:通胀预期是影响利率期限结构变动的 主因,制定恰当的宏观经济政策,适时地引导公众对通胀的预期,有利于市场尤 其是固定收益类的市场,更加健康有序地发展。 第四节本文贡献与不足 本文从计量模型出发,对中国利率期限结构变动的宏观解释做了一点尝试, 得到了一些有益的结论。文章的主要贡献可归纳如下: 1 实证所用的数据时间窗口大,从1 9 9 7 年到2 0 0 7 年的固定附息债券的数 据,时间跨度达1 0 年之久,即使考虑因债券品种稀少而剔出最初几年,数据窗 口也比以往国内的文献大得多。足够大的时间窗口为构建准确的中国利率期限结 构提供了坚实的基础。 2 研究的课题新,研究的面广。就国内的文献看,还少有涉及对利率期限 结构动态变化的宏观解释的研究,本文以它为研究对象,同时贯穿了利率期限结 构的其他研究领域,如利率期限结构的静态估计,利率期限结构自身形态的微观 解释,利率期限结构动态模型的介绍和相关实证检验。 3 采用多种计量模型,对同一问题从不同角度进行实证分析,彼此呼应, 相互印证,加深了实证结论的可信度。 4 引入k a l m a nf i l t e r 算法,为准确模拟宏观经济变量与利率期限结构之间 的动态相依关系,提供了有利武器。 当然文章不足之处也在所难免,虽然计量的模型和方法对挖掘变量的相依关 系有很大的帮助,但如果没有从金融模型出发,就可能比较难深入问题的本质, 这是研究有待改进的方向。具体地说,今后的研究思路为:首先从无套利的观点 出发,构造宏观经济动态模型,然后引入时变的风险价格,通过测度转换,在风 险中性世界里对债券定价,直至最后推导出利率期限结构,并解析利率期限结构 与宏观因子的动态相依关系。 6 第一章利率期限结构的文献综述 第一章利率期限结构的文献综述 利率期限结构形状各异,可能上升、可能下降、也可能呈现s 型,西方学者 对利率曲线结构的这些形态提出了不同的理论进行解释,这一部分将分传统理论 和现代理论进行简要评述。同时在该部分的第三节中对新近的利率期限结构的模 型进行阐述,这些模型与利率期限结构的宏观解释相关。 第一节利率期限结构的传统理论 为了与利率期限结构的现代理论相对照,本文将利率期限结构的形成假设 称为传统理论。这些理论主要有无偏差预期理论、流动性偏好理论和市场分割理 论,分别介绍如下: 一无偏差预期理论 无偏差预期理论( 有时称纯预期理论) 认为,远期利率等于市场整体对未来 及其利率的预期,于是国债的短期即期利率与长期即期利率存在差别的主要原因 在于人们对未来即期利率的预期。根据无偏差预期理论,投资者投资长期国债的 收益等于一系列短期国债的收益,即采用到期策略( 投资于长期国债) 得到的预 期收益等于滚动策略( 投资于一系列短期国债) 得到的预期收益。长期国债的即 期利率是这期限内预期的短期国债的即期利率的几何加权平均值。用方程式来表 示,无偏差预期理论表明,在均衡状态下,预期的未来即期利率等于远期利率: e s , - l ,t = f - l , ( 1 1 ) 于是: ( 1 + s ) ( 1 + e ,2 ) ( 1 + e ,3 ) ( 1 + ( 一l ,) = ( 1 + s ) ( 1 2 ) 改写为: ( 1 + s ) ( 1 + e s i ,2 ) ( 1 + 啦,3 ) ( 1 + e s , 一l 。,) = ( 1 + s ) ( 1 3 ) 无偏差预期理论是解释国债利率期限结构理论的基础,它决定了收益率曲线 的基本走势。如果预期未来即期利率将提高,则收益曲线向上倾斜;如果预期未 7 中因利率期限结构动态变化的宏观解释 来即期利率将下降,则收益率曲线向下倾斜。 二流动性偏好理论 流动性偏好理论认为,风险避免因素将影响利率期限结构。流动性偏好理论 以投资者主要感兴趣的为短期证券这样一个观点为出发点。即使一些投资者有较 长的投资期限,他们仍然有一种偏好短期证券的倾向。流动性偏好理论认为风险 规避和预期,是影响国债利率期限结构的两大因素,因为经济活动具有不确定性, 对未来即期利率是4 i 能完全预期的。到期期限越长,利率变动的可能性越大,利 率风险就越大。那么对于流动性较差的长期国债,投资者要求给予一定的补偿, 即流动性溢酬或称风险溢酬( 即只有当到期策略获得的收益比滚动策略高时,投 资者才愿意选择到期策略,投资于长期国债) ,然而风险的补偿差额又与预期有 关。根据流动性偏好理论,远期利率与预期即期利率的差就是流动性溢酬( 厶“;) 用公式表示为: f - l ,= e s , 山+ 厶- i , ( 1 4 ) 于是: ( 1 + s ) ( 1 + e ,2 ) ( 1 + e ,3 ) ( 1 + e l ,) = ( 1 + s ) ( 1 5 ) 可以改写为: ( 1 + s 1 ) ( 1 + 硒,2 + 厶。2 ) ( 1 + 趣,3 + 厶,3 ) ( 1 + e s , 1 ,+ 厶一l ,) = ( 1 + s ) ( 1 6 ) 流动性偏好对利率期限结构的解释关键,在于如下不等式: ( 1 + s ) ( 1 + 硒,2 ) ( 1 + 啦,3 ) ( 1 + e , s t l ,) = ( 1 + s ) ( 1 7 ) 对于向下倾斜的收益曲线,此时s 篷 s 此不等式仅当预期的未来即 期利率低于当年一年期即期利率时才成立,即硒,: s ,e s :, 是, e s , - l , s 一。;对于水平收益曲线,此时s = 爱= = 墨,此不等式仅当预期的未来 即期利率低于当年一年期即期利率时才成立,即e s , ,: s ,啦, 是, e s - 1 , s l ;对于向上倾斜的收益率曲线,此时s 。 s 2 s ,如果是一个平 缓的向上倾斜,这可能是预期未来利率将下降的情况,即 r 第一章利率期限结构的文献综述 皤,: s ,啦。, 是,举吐, s l 。 三市场分割理论 市场分割理论认为:不同的债券持有者和发行者由于受到法律、偏好或风俗 习惯等的影响,而偏向于某一特定的国债,投资者和借入者将不会离开他们的市 场而进入一个不同的市场,即使当前的利率提醒他们,做这样一个移动将获得一 个更高的预期收益。依据该理论,国债市场可分为短期市场和长期市场,二者是 彼此分割的,由各自的供求关系所决定。首先供求关系决定了国债的价格,进而 决定了国债的利率,因为国债的利率与价格为反向变动关系。按照市场分割理论, 国债利率期限结构不取决于市场对未来即期利率的预期,而是取决于、长短期国 债市场的供求状况。一个向上倾斜的期限结构存在于这样一个时候,即短期资金 的供给和需求曲线的交点比长期资金的交点的利率低;一个向下倾斜的期限结构 则出现在短期资金的供给和需求的交点的利率比长期资金的交点的利率高。 西方债券市场的经验数据研究证明:三种理论模型中,预期理论表达了对未 来即期利率的信息;偏好理论的流动性升水,在期限一年以内的政府债券定价中 明显存在,而在一年期以上的债券中则不存在:市场分割理论的经验证明相对较 弱。利率期限结构预期理论是金融理论和宏观经济理论的基石之一,它在预测利 率未来变动、解释货币政策、建立宏观经济模型等方面起着重要的作用。 第二节利率期限结构的现代理论 根据利率期限结构模型的推导过程,可将利率期限结构的现代理论分为两种 类型: 第一种类型就是一般均衡模型,根据市场的均衡条件求出利率所必须遵循的 一个过程,在这些模型中,相关条件的经济变量是输入变量,利率水平是输出变 量。均衡模型是在金融产品定价中使用的传统模型,有助于理解经济变量之间的 潜在关系,缺点是均衡模型是用经济学方法建立的模型,缺乏金融市场的实证基 础,形式简单( 例如,模型参数往往是与时间无关的常数) ,难以准确地刻画利 9 中囝利率期限结构动态变化的宏观解释 率变化的客观规律。经典的均衡模型有:v a s i c e k 模型、c i r 模型等。 另一种类型是无套利模型,通过相关债券等资产之间必须满足的无套利条件 进行分析,此时利率水平是一个输入变量,这类模型的主观色彩较浓,并且其模 型参数的估计必须依赖市场利率的历史数据。经典的无套利模型有h o l e e 模型、 h j m 模型和h u ii - w h ii e 模型等。 一一般均衡模型 1v a slc e k 模型 v a s i c e k 模型是众多利率期限结构模型中最简单的一个,在风险中性世界中, 利率遵从如下过程: d r = 后( 曰一,) 西+ c r d w( 1 8 ) 其中,k ,0 ,仃都是常数。,表示短期瞬时利率,k 表示利率均值回归速度, 矽表示长期均值,仃表示波动率。 它假设所有参数都是常数,不随时间变化,而且波动率也是一个常数,没有 考虑利率水平对波动率高低的影响以及波动率本身的g a r c h 效应等,但它却能 够比较好地拟合现实数据,缺陷是过于简单,没有考虑利率必须是一个大于零的 正数,因此在拟合过程中就可能出现为负的情况,这不符合现实情况。 2c ir 模型 c i r ( 科克斯( j c c o x ) 、英格索尔( j e i n g e r s o l l ) 和罗斯( s a r o s s ) ) 模型 认为:利率围绕一个平均值波动,如果利率偏离了平均值,它总是要回到平均值 的。利率回到平均值的时间由模型中的调整速度描述。如果调整速度接近于1 , 利率将很快回到平均值。用r 表示利率的变化,表示现行短期利率,秒表示 平均利率,k 表示,的调整速度,仃表示波动率,可以得到基本的单因素模型公 式如下: d r = k ( o 一,) 础+ c r 4 r d w( 1 9 ) 通过重点分析纯贴水金融工具,科克斯等人试图勾画出债券价格行为背后的 随机过程。在单一因素模型中,他们假设技术状态用单一状态变量来表示。他们 1 0 第一章利率期限结构的文献综述 发现,债券的实际价格是短期利率的递减的凸形函数,这就是说,各种利率同步 变化。此外,与复利的数学计量相符,债券价格是期限的递减函数。更加令人感 兴趣的结论是,债券价格是利率与财富之间协方差的递增函数,在协方差较大的 条件下,财富值大则利率高债券价格低;财富值d , n 乖u 率低债券价格高。这种理 想的资产拥有正的边际效用,因而影响着财富的价值。 在c i r 模型中,债券价格还是利率方差的递增的凹形函数。科克斯等人认 为,较高的方差反映了未来实际生产机会具有较大的不确定性,因而未来的消费 具有较大的不确定性,风险回避投资者就会对债券定价较高,而它的某些收益与 各种经济状况有关。总体而言,c i r 模型认为,在大多数情况下,利率期限结构 中包含着正值的期限溢价。根据该模型,期限结构曲线任何一点上收益率的变化 都与曲线高一点上收益率的变化完全相关。此外,长期利率收敛于正常利率即前 面公式中的平均值,因此长期利率可以被视为c i r 模型期限结构所围绕的核心。 调整系数是一项重要的回归参数,它告诉我们,长期利率在何种程度上迅速地向 正常利率回归。 科克斯一英格索尔一罗斯把他们的模型,扩展到债券以外的其他证券这 些证券的偿付取决于利率如债券的期权和期货合同。另外他们探讨了期限结 构的多因素模型。更新的c i r 模型是两因素的,两因素模型认为:随着时间的 推移,短期利率将趋向长期利率水平。与单因素模型描述短期利率,认为短期利 率趋向一个平均值不同,两因素模型将利率的变化描述为两种随机过程,即短期 利率的随机过程和长期利率的随机过程,在对诸如长期利率期权等相关证券定价 时,这种形式很有用处。 期限结构的c i r 模型的优点,是它产生于经济中的内在经济变量和总体均 衡。因此,它包含了风险回避、时间消费偏好、财富限制、导致风险补偿的因素 和众多的投资选择。尽管该公式具有众多优点,但是它太复杂,在估算经济参数、 风险参数和进行现实预测方面产生困难。使用c i r 模型的研究者试图简化假设, 并简化该模型中包括的连续数学计算,可以推导出债券以及其他金融工具的定价 公式。 中国利率期限结构动态变化的宏观解释 二无套利模型 利率衍生品的定价是利率期限结构的重要应用之一,而衍生品价格的定价属 于相对定价,我们的目标是:给定标的资产价格来确定衍生品价格,这就启发我 们直接利用市场价格来构造利率期限结构模型,所谓的“无套利模型构建思路 为:首先使所建立的模型与观测的收益曲线( 零息债券价格) 一致,确定出模型 参数后,再用该模型给其他衍生品定价。这种思路与b l a c k 和s c h o l e s ( 1 9 7 3 ) 提出 的期权定价模型相似,模型构建的发端在于标的资产的可观测的收益曲线。 1h o - l e e 模型 d r = o ( t ) d t + c r d w( 1 1 0 ) 其中o ( t ) = o f 石( o _ , t ) + 盯2 ,f ( 0 , t ) 表示时刻t 的远期利率。h 。- l e e 模型用一种 比较简单的方式来模拟利率期限结构随时间的可变性,它由最初的利率期限结构 来决定,因此是一个相对定价模型,同时最初期限结构的外生性,决定了利率期 限结构的变化也是外生的。h o l e e 模型存在诸多不足,例如利率可能出现负值, 利率的波动率是常数,期限结构的动态性质只源于一个因素短期利率,为了 克服这些缺点,后人对该模型进行了改进,h j m 模型就是其中经典的一例: 2h j m 模型 h j m 模型的思想与h o l e e 模型类似。它首先假设: 篱叫t , t ) d t 毗聊彬 ( 1 1 1 ) 其中j u ( t ,t ) ,c r ( t ,t ) 依次是b ( t ,t ) 收益期望值和波动率,形为布朗运动。在无套 利下,存在一个等鞅测度( e m m ) 可将上式转化为: 筹哪毗州- , ( 1 1 2 ) 其中矿r 是新测度下的布朗运动。解这个随机微分方程可得: b ( f ,t ) = b ( o ,t ) e x p i r f l s + l 仃( s ,t ) d w s i j t1 0 2 0 ,t ) d s ( 1 1 3 ) , 一 o, 消去短期利率后: 1 2 第一章利率期限结构的文献综述 附) = 鬻唧 卜刀毗功厩一渺驴托呦m 1 4 ) 由此式可知,债券价格由利率期限结构 ( 篱埔波样赧结构( 榔) 、 c r ( s ,) ) 决定。进一步地,我们还可以得到瞬时远期利率的动态过程: rf f ( t ,歹) = 厂( o ,7 - ) - p ( s ,丁矽万s + j 万( s ,7 沙( s ,t ) d s ( 1 1 5 ) 0 0 令t - - t ,则有: ,( f ) = 厂( f ,t ) - - f ( o ,f ) 一p ( s ,t ) d w s + p ( s ,咖( 岛f ) 凼 ( 1 1 6 ) h j m 模型弥补了h o l e e 模型的很多不足,不过遗憾的是它并没有封闭解, 并且即便是数值解也存在诸多困难,因为r ( f ) 式中的y o ,t ) ,a ( s ,t ) 很可能是一 些随机变量的函数,导致,( f ) 不服从马氏过程,这将大大增减求解的难度。 3h uil & w h i ie 模型 我们令h j m 模型( 1 1 5 ) q b 瞬时远期利率的波动率r ( s ,t ) 为下面的形式: r ( s ,丁) = 仃e 一五,。 ( 1 17 ) 即可得到h u l l & w h i l e 模型,该模型在业界有广泛的应用。 除了上面介绍的动态模型,后人还对利率期限结构模型进行了扩展和一般 化,例如d a i & s i n g l e t o n 利用随机贴现因子的分析框架,将一系列的利率期限 结构模型包括在该理论框架下,更系统详细的评述可参见林海( 2 0 0 7 ) 4 0 1 1 拘文 童。 第三节利率期限结构变动的宏观解释 利率模型纷繁复杂,但彳亍文至此,我们还没有看到利率期限结构与宏观经济 变量的相依关系如何在模型中体现。实际上国外的学者已经做了不少相关的尝 试,新近的典型例子有a n d r e w ( 2 0 0 2 ) t 2 1 矛l lh a n s ( 2 0 0 6 ) t 1 6 1 等,他们的模型实际是在 d a i & s i n g l e t o n ( 2 0 0 3 ) 1 9 1 分析框架下的延伸和扩展,前者为离散形式,后者为连续 中闻利率期限结构动态变化的宏观解释 形式。下面分别简介如f : a n d r e w ( 2 0 0 2 ) t 2 1 模型首先假设状态向量( 或称因素向量) 满足: z = + z 一。+ q

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论