信息检索技术论文-基于人脸识别的门警系统研究报告(桂电).doc_第1页
信息检索技术论文-基于人脸识别的门警系统研究报告(桂电).doc_第2页
信息检索技术论文-基于人脸识别的门警系统研究报告(桂电).doc_第3页
信息检索技术论文-基于人脸识别的门警系统研究报告(桂电).doc_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

期末课程论文论文标题:基于人脸识别的门警系统研究课程名称: 信息检索技术课程编号: 1220500学生姓名: *学生学号: 1100310106所在学院: 计算机科学与工程学院学习专业: 计算机科学与技术课程教师: 王 冲 2013年7月 日一:摘要人脸识别是当今计算机研究领域一项热门的课题,但是把他同门禁系统结合还比较少。人脸识别特指利用分析比较人脸视觉特征信息进行身份鉴别的计算机技术。人脸识别可以将人脸明暗侦测,自动调整动态曝光补偿,人脸追踪侦测,自动调整影像放大;它属于生物特征识别技术,是对生物体(一般特指人)本身的生物特征来区分生物体个体。人脸识别技术中被广泛采用的区域特征分析算法,它融合了计算机图像处理技术与生物统计学原理于一体,利用计算机图像处理技术从视频中提取人像特征点,利用生物统计学的原理进行分析建立数学模型,即人脸特征模板。利用已建成的人脸特征模板与被测者的人的面像进行特征分析,根据分析的结果来给出一个相似值。通过这个值即可确定是否为同一人。出入口门禁安全管理系统是新型现代化安全管理系统,它集微机自动识别技术和现代安全管理措施为一体,它涉及电子,机械,光学,计算机技术,通讯技术,生物技术等诸多新技术。它是解决重要部门出入口实现安全防范管理的有效措施。适用各种机要部门,如银行、宾馆、车场管理、机房、军械库、机要室、办公间,智能化小区,工厂等。两个都是现代社会的一大热点话题,所以诞生出了一门新的基于人脸识别的门禁系统的研究课题。已成为大家关注的热点问题。二:基于人脸识别的门禁系统(一):系统简介该系统利用自身研发的高效识别、低误判率(到目前使用中未发现误判)、功能强大的人脸识别门禁/考勤SDK,结合现代高安全性门禁要求而研发了人脸识别门禁系统;本系统不但解决了卡类门禁与RFID类门禁的不足,同时也解决了指纹识别的不足。同时本系统可 以与传统的刷卡识别、指纹识别、 RFID识别有机结合从而打造一个更高安全级别的门禁系统以满足新形势下的高安全门禁要求人脸识别终端采用全新模具外观设计,是一款完全脱机的人脸识别门禁考勤产品,它定位于中高端门禁考勤市场,取代目前市场上的刷卡、指纹门禁考勤机。本文所设计的门禁系统由一个服务器和两个门禁控制器组成, 一个门禁控制器在通过摄像头采集人脸图像的同时另一个可以通过指纹采集仪采集指纹信息。管理服务器软件并行连接两个门禁识别器软件,通过USB 接口实现相互通信,服务器端软件对两个门禁识别器软件的连接实现多线程处理。该产品支持刷卡人脸拍照、工号人脸识别、人脸识别、刷卡人脸识别四种验证方式,方便用户灵活选择,支持TCP/IP、U盘两种通信方式,用户灵活选择,实现用户数据和门禁记录的上传下载,配置专业版门禁考勤管理软件。(二):系统原理人脸识技术中被广泛采用的区域特征分析算法,它融合了计算机图像处理技术与生物统计学原理于一体,利用计算机图像处理技术从视频中提取人像特征点,利用生物统计学的原理进行分析建立数学模型,即人脸特征模板。利用已建成的人脸特征模板与被测者的人的面像进行特征分析,根据分析的结果来给出一个相似值。通过这个值即可确定是否为同一人。具体有以下内容:(1):人脸检测:(2);人脸跟踪(3):人脸对比。人脸识别的过程:(1)首先建立人脸的面像档案。即用摄像机采集单位人员的人脸的面像文件或取他们的照片形成面像文件,并将这些面像文件生成面纹)编码贮存起来。(2)获取当前的人体面像。即用摄像机捕捉的当前出入人员的面像,或取照片输入,并将当前的面像文件生成面纹编码。(3)用当前的面纹编码与档案库存的比对。即将当前的面像的面纹编码与档案库存中的面纹编码进行检索比对。上述的“面纹编码”方式是根据人脸脸部的本质特征和开头来工作的。这种面纹编码可以抵抗光线、皮肤色调、面部毛发、发型、眼镜、表情和姿态的变化,具有强大的可靠性,从而使它可以从百万人中精确地辩认出某个人。人脸的识别过程,利用普通的图像处理设备就能自动、连续、实时地完成。(三):系统内容1:图像采集图像采集端利用DirectShow 技术对摄像头进行控制,实现视频图像的预览,并在预览的过程中对实时的视频进行抓拍,将抓拍图像传至嵌入式计算机主板,由基于PCA 和BP 神经网络的人脸识别软件进行识别处理。2:人脸识别(1) 对人脸图像的特征提取由于摄像头采集的人脸图片的信息量往往很大,直接处理会产生庞大的计算量,所以在人脸识别之前要进行特征提取。在降低特征空间的维数的同时,尽可能地保留识别信息,以达到有效分类。本系统使用主成分分析算法实现对人脸图像的特征提取。主成分分析(principal compONent analysis, PCA)是多元统计分析中用来分析数据的一种方法,它是用一种较少数量的特征对样本进行描述以达到降低特征空间维数的方法,方法的基础是Karhunen-Loeve展开式。K-L 变换的最大优点是去相关性好。这样可以将图像中大量无关的冗余信息去除,降低了之后运用神经网络的结构复杂度,同时也提高了神经网络的训练效率和收敛率。采用PCA 进行人脸特征提取的一般方法是:设有N 个训练样本,每个由其像素灰度组成一个向量xi,则样本图像像素数即为向量xi的维数,M=wIDTh height (行像素数列向量数),由向量构成的样本集为x1,x2,,xn,该样本集的平均向量是 协方差矩阵可表示为: 求协方差矩阵C 的特征向量ei和对应的特征值i.由大于m的i对应的特征向量构成主成分,主成分构成的变换矩阵为: 在实际的人脸识别过程中,对于一个输入的测试样本x,求它与平均脸之间的偏差y=x-x 则在特征脸空间的投影可表示为系数向量:式中z 为K-L 变换的展开系数向量,为m1 维。这样一个脸部图像就可以用较低维的系数向量表示,从而实现了用低维向量表征原始人脸图像。可以选取对应特征值最大的前m 个特征向量,使得:在式中可以选取鄣=90%,从而使得样本集在前m 个轴上的能量占整个能量的90%以上。利用BP 神经网络对人脸图像进行识别BP 网络是一种单向传播的多层前向网络。(3 层的BP 网络的基本结构如图1)。BP 学习算法称为误差逆传播算法,基本思想是通过网络误差函数的极小值来调整权重分布使神经网络收敛于稳定状态,从而使网络在接受未知输入时也会给出适当的输出。系统采用BP 神经网络对人脸识别的的具体过程有以下几步:1)产生一个训练集,训练集用于BP 网络在模式识别方面训练网络,使网络能够按照学习算法调整结构参数,以达到学习的目的。如果在实际应用中,人脸的样本可能只有1,2 个,这样就会导致BP 神经网络训练样本缺乏,所以在应用中应有充分人脸对象的样本采集。2)设计BP 网络并进行训练。网络的每一个输入节点对应于样本的一个特征,而输出节点数等于类别数。设计好网络层数,隐藏层神经元数及所期望的网络误差,学习速率后, 用上述主分量分析法得到的特征样本对网络进行反复训练, 直到对所有训练样本,网络都能给出满意的结果时,学习训练完成(如图 3)进行识别。在此阶段,当一个未知类别样本A 作为一个测试样本作用到输入端时,经过投影后得到特征矩阵Y,利用训练好的网络分类器对其进行分类,考察各输出节点的输出,从而识别出所属类别。 人脸识别结果为验证系统,实验中采用Yale 人脸数据库,该数据库由美国耶鲁大学的实验室采集,包括15 个人的每人11 张人脸灰度图像,共计165 张。它们是在不同时间、光照略有变化、不同表情(眼睛张或闭,笑或不笑)以及不同脸部细节(有眼镜或没眼镜)下获取的。每张图像的尺寸为128128 像素, 比较充分地反应了同一个人不同人脸图像的变化和差异。将图像库中的人脸图像分为两组,其中150 张为训练样本,另外15 张为测试样本。实验中,训练神经网络所需时间平均为10秒,人脸的识别过程所需的时间平均为0.5 s,对于合法用户的识别率为89%,非法用户的识别率可达95%.四: 结果检测判别流程:门禁控制器通过摄像头捕获到人脸图像,并把该图像发送到服务端进行人脸识别。通过指纹采集仪获取用户指纹,并通过封装在控制器内部的指纹模块进行指纹比对。若人脸识别通过,指纹识别也通过,则判断用户有该门的权限并开门。若人脸识别通过,指纹识别未通过,则要求请求者再测一次。若人脸识别未通过,则不开门。本系统的测试方法为:在相同光照条件下,对已注册的用户分别进行10 次进门操作,对未注册的用户分别进行10 次进门操作。系统设置识别方式为人脸识别、指纹识别串行执行。测试记录用户每次进门操作识别成功与否,使用何种识别方式识别通过等信息,统计测试系统的性能。从实验结果来看,人脸识别率达到93%,而人脸加指纹的识别率达到98%,并且没有出现错误接受的情况,但由于测试数据量比较小,在实际运行中,可能会出现错误接收的情况,从测试情况来看,错误接受率不会高于0.01%.五:结论传统PCA 方法在处理人脸图像时,要将二维图像矩阵转换成一维的列向量,使图像的维数达到上万维,计算工作量大,特征提取速度慢。针对PCA 算法的不足,也有研究者提出了独立分量分析法(ICA,Independent Component Analysis),在这些方面仍有待作进一步探索。而且虽然BP 网络得到了广泛应用,但其自身也存在一些缺陷和不足,主要包括网络的收敛速度慢,且存在局部最小值问题。可采用变化的学习速率或自适应的学习速率以及附加动量法加以改进和解决,将指纹识别与人脸识别相结合,进行人脸图像的一对一比对,所以识别速度更快,合法用户与非法用户的识别率均较高,提高了身份验证的安全性和有效性。人脸和指纹这两个生物特征都具有很好的抗干扰性和不怕遗失的特性,而且识别率也非常,可以很好的解决传统门禁系统如IC 卡门禁所存在的不足,达到减少人为因素对门禁系统的影响的目的。因此,智能门禁系统适用于高度机密性场所安全保护和高效率管理的需要,同时也适用于大规模用户进行快速、准确的身份鉴别的需要。选择检索工具 根据课题所需要可选用的手工检索工具和计算机检索系统,主要采用计算机检索系统。选用的检索系统主要有:A、新浪网新浪爱问共享资料库; B、桂林电子科技大学图书馆数据导航系统中国知网; C、桂林电子科技大学图书馆数据导航系统万方数据; D、百度。参考文献: 1 刘长华;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论