




免费预览已结束,剩余9页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
14.1几何证明选讲1平行截割定理(1)平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在任一条(与这组平行线相交的)直线上截得的线段也相等(2)平行线分线段成比例定理两条直线与一组平行线相交,它们被这组平行线截得的对应线段成比例2相似三角形的判定与性质(1)相似三角形的判定定理两角对应相等的两个三角形相似;两边对应成比例且夹角相等的两个三角形相似;三边对应成比例的两个三角形相似(2)相似三角形的性质定理相似三角形的对应线段的比等于相似比相似三角形周长的比等于相似比相似三角形面积的比等于相似比的平方3直角三角形射影定理直角三角形一条直角边的平方等于该直角边在斜边上的射影与斜边的乘积,斜边上的高的平方等于两条直角边在斜边上的射影的乘积4圆中有关的定理(1)圆周角定理:圆周角的度数等于其所对弧的度数的一半(2)圆心角定理:圆心角的度数等于它所对弧的度数(3)切线的判定与性质定理切线的判定定理过半径外端且与这条半径垂直的直线是圆的切线切线的性质定理圆的切线垂直于经过切点的半径(4)切线长定理从圆外一点引圆的两条切线,切线长相等(5)弦切角定理弦切角的度数等于其所夹弧的度数的一半(6)相交弦定理圆的两条相交弦,每条弦被交点分成的两条线段长的积相等(7)割线定理从圆外一点引圆的两条割线,该点到每条割线与圆的交点的两条线段长的积相等(8)切割线定理从圆外一点引圆的一条割线与一条切线,切线长是这点到割线与圆的两个交点的线段长的等比中项(9)圆内接四边形的性质与判定定理圆内接四边形判定定理()如果四边形的对角互补,则此四边形内接于圆;()如果四边形的一个外角等于它的内角的对角,那么这个四边形的四个顶点共圆圆内接四边形性质定理()圆内接四边形的对角互补;()圆内接四边形的外角等于它的内角的对角1(2014广东)如图,在平行四边形ABCD中,点E在AB上且EB2AE,AC与DE交于点F,则_.答案9解析在平行四边形ABCD中,因为EB2AE,所以,故3.因为AECD,所以AEFCDF,所以()29.2.如图,在直角梯形ABCD中,DCAB,CBAB,ABADa,CD,点E,F分别为线段AB、AD的中点,则EF_.答案3(2014湖北)如图,P为O外一点,过P点作O的两条切线,切点分别为A,B.过PA的中点Q作割线交O于C,D两点若QC1,CD3,则PB_.答案4解析由切割线定理得QA2QCQD4,解得QA2.由切线长定理得PBPA2QA4.4如图所示,过点P的直线与O相交于A,B两点若PA1,AB2,PO3,则O的半径等于_答案解析设O的半径为r(r0),PA1,AB2,PBPAAB3.延长PO交O于点C,则PCPOr3r.设PO交O于点D,则PD3r.由圆的割线定理知,PAPBPDPC,13(3r)(3r),9r23,r.题型一相似三角形的判定及性质例1如图,已知在ABC中,点D是BC边上的中点,且ADAC,DEBC,DE与AB相交于点E,EC与AD相交于点F.(1)求证:ABCFCD;(2)若SFCD5,BC10,求DE的长(1)证明DEBC,D是BC边上的中点,EBEC,BECD,又ADAC,ADCACD,ABCFCD.(2)解过点A作AMBC,垂足为点M,ABCFCD,BC2CD,()24,又SFCD5,SABC20,又SABCBCAM10AM20,解得AM4,又DEAM,DMDC,BMBDDM5,解得DE.思维升华(1)三角形相似的证明方法很多,解题时应根据条件,结合图形选择恰当的方法一般的思考程序:先找两对内角对应相等;若只有一个角对应相等,再判定这个角的两邻边是否对应成比例;若无角对应相等,就要证明三边对应成比例(2)证明等积式的一般方法是化为等积的比例式,若题目中无平行线,需利用相似三角形的性质证明如图,在梯形ABCD中,ADBC,ABCD,DECA,且交BA的延长线于E,求证:EDCDEABD.证明在梯形ABCD中,ABDC,ABCDCB.又BCBC,ABCDCB.BACBDC,ACED,ADBC,EBACBDC,EADABCDCB,EADDCB.,即EDCDEABD.题型二直角三角形的射影定理例2如图,在ABC中,D、F分别在AC、BC上,且ABAC,AFBC,BDDCFC1,求AC.解在ABC中,设AC为x,ABAC,AFBC.又FC1,根据射影定理,得AC2FCBC,即BCx2.再由射影定理,得AF2BFFC(BCFC)FC,即AF2x21,AF.在BDC中,过D作DEBC于E.BDDC1,BEECx2.又AFBC,DEAF,DE.在RtDEC中,DE2EC2DC2,即()2(x2)212,1.整理得x64,x,即AC.思维升华(1)在使用直角三角形射影定理时,要学会将“乘积式”转化为相似三角形中的“比例式”(2)证题时,作垂线构造直角三角形是解直角三角形常用的方法如图所示,在ABC中,CAB90,ADBC于D,BE是ABC的平分线,交AD于F,求证:.证明由三角形的内角平分线定理得,在ABD中,在ABC中,在RtABC中,由射影定理知,AB2BDBC,即.由得:,由得:.题型三圆的切线的判定与性质例3如图,在RtABC中,C90,BE平分ABC交AC于点E,点D在AB上,DEEB,且AD2,AE6.(1)判断直线AC与BDE的外接圆的位置关系;(2)求EC的长解(1)取BD的中点O,连结OE.BE平分ABC,CBEOBE.又OBOE,OBEBEO,CBEBEO,BCOE.C90,OEAC,直线AC是BDE的外接圆的切线,即直线AC与BDE的外接圆相切(2)设BDE的外接圆的半径为r.在AOE中,OA2OE2AE2,即(r2)2r262,解得r2,OA2OE,A30,AOE60.CBEOBE30,ECBEr23.思维升华证明直线是圆的切线的方法:若已知直线经过圆上某点(或已知直线与圆有公共点),则连结圆心和这个公共点,设法证明直线垂直于这条半径;如果已知条件中直线与圆的公共点不明确(或没有公共点),则应过圆心作直线的垂线,得到垂线段,设法证明这条垂线段的长等于圆半径(2013广东改编)如图,AB是圆O的直径,点C在圆O上,延长BC到D使BCCD,过C作圆O的切线交AD于E.若AB6,ED2,求BC的长解C为BD中点,且ACBC,故ABD为等腰三角形ABAD6,所以AE4,DE2.又,所以AC2AEAD4624,AC2,在ABC中,BC2.题型四与圆有关的比例线段例4(2014课标全国)如图,P是O外一点,PA是切线,A为切点,割线PBC与O相交于点B,C,PC2PA,D为PC的中点,AD的延长线交O于点E.证明:(1)BEEC;(2)ADDE2PB2.证明(1)连结AB,AC.由题设知PAPD,故PADPDA.因为PDADACDCA,PADBADPAB,DCAPAB,所以DACBAD,从而.因此BEEC.(2)由切割线定理得PA2PBPC.因为PAPDDC,所以DC2PB,BDPB.由相交弦定理得ADDEBDDC,所以ADDE2PB2.思维升华(1)应用相交弦定理、切割线定理要抓住几个关键内容:如线段成比例与相似三角形、圆的切线及其性质、与圆有关的相似三角形等(2)相交弦定理、切割线定理主要用于与圆有关的比例线段的计算与证明解决问题时要注意相似三角形知识及圆周角、弦切角、圆的切线等相关知识的综合应用如图,O的半径OB垂直于直径AC,M为AO上一点,BM的延长线交O于N,过N点的切线交CA的延长线于P.(1)求证:PM2PAPC;(2)若O的半径为2,OAOM,求MN的长(1)证明连结ON,则ONPN,且OBN为等腰三角形,则OBNONB,PMNOMB90OBN,PNM90ONB,PMNPNM,PMPN.根据切割线定理,有PN2PAPC,PM2PAPC.(2)解OM2,在RtBOM中,BM4.延长BO交O于点D,连结DN.由条件易知BOMBND,于是,即,BN6.MNBNBM642.与圆有关的几何证明问题典例:(10分)如图,D,E分别为ABC边AB,AC的中点,直线DE交ABC的外接圆于F,G两点若CFAB,证明:(1)CDBC;(2)BCDGBD.思维点拨(1)连结AF,利用平行关系构造平行四边形可得结论;(2)先证BCD和GBD为等腰三角形,再证明两三角形顶角相等即可规范解答证明(1)因为D,E分别为AB,AC的中点,所以DEBC.又已知CFAB,故四边形BCFD是平行四边形,所以CFBDAD.而CFAD,连结AF,所以四边形ADCF是平行四边形,故CDAF.5分因为CFAB,所以BCAF,故CDBC.6分(2)因为FGBC,故GBCF.由(1)可知BDCF,所以GBBD,所以BGDBDG.8分由BCCD知CBDCDB,又因为DGBEFCDBC,所以BCDGBD.10分处理与圆有关的比例线段的常见思路:(1)利用圆的有关定理;(2)利用相似三角形;(3)利用平行线分线段成比例定理及推论;(4)利用面积关系等温馨提醒(1)解决几何证明问题需用各种判定定理、性质定理、推理和现有的结论,要熟悉各种图形的特征,利用好平行、垂直、相似、全等的关系,适当添加辅助线和辅助图形,这些知识都有利于问题的解决(2)证明等积式时,通常转化为证明比例式,再证明四条线段所在的三角形相似另外也可利用平行线分线段成比例定理来证明(3)弦切角定理与圆周角定理是证明角相等的重要依据,解题时应根据需要添加辅助线构造所需要的角(4)圆内接四边形的性质也要熟练掌握,利用该性质可得到角相等,进而为三角形的相似创造了条件.方法与技巧1证明等积式成立,应先把它写成比例式,找出比例式中给出的线段所在三角形是否相似,若不相似,则进行线段替换或等比替换2圆幂定理与圆周角、弦切角联合应用时,要注意找相等的角,找相似三角形,从而得出线段的比由于圆幂定理涉及圆中线段的数量计算,所以应注意代数法在解题中的应用失误与防范1在应用平行截割定理时,一定要注意对应线段成比例2在解决相似三角形时,一定要注意对应角和对应边,否则容易出错.A组专项基础训练(时间:50分钟)1如图,ABC中,BFAC于点F,CEAB于点E,BF和CE相交于点P,求证:(1)BPECPF;(2)EFPBCP.证明(1)BFAC于点F,CEAB于点E,BFCCEB90.又CPFBPE,CPFBPE.(2)由(1)得CPFBPE,.又EPFBPC,EFPBCP.2.如图,ABC中,BAC90,ADBC交BC于点D,若E是AC的中点,ED的延长线交AB的延长线于F,求证:.证明E是RtADC斜边AC的中点,AEECDE.EDCECD,又EDCBDF,EDCCBDF.又ADBC且BAC90,BADC,BADBDF,DBFADF.又RtABDRtCBA,因此.3(2014江苏)如图,AB是圆O的直径,C,D是圆O上位于AB异侧的两点证明:OCBD.证明因为B,C是圆O上的两点,所以OBOC.故OCBB.又因为C,D是圆O上位于AB异侧的两点,故B,D为同弧所对的两个圆周角,所以BD.因此OCBD.4(2013江苏)如图,AB和BC分别与圆O相切于点D,C,AC经过圆心O,且BC2OC.求证:AC2AD.证明连结OD.因为AB和BC分别与圆O相切于点D,C,所以ADOACB90.又因为AA,所以RtADORtACB.所以.又BC2OC2OD,故AC2AD.5.如图所示,平行四边形ABCD中,E是CD延长线上的一点,BE与AD交于点F,DECD.(1)求证:ABFCEB;(2)若DEF的面积为2,求平行四边形ABCD的面积(1)证明四边形ABCD是平行四边形,AC,ABCD.ABFCEB.ABFCEB.(2)解四边形ABCD是平行四边形,ADBC,ABCD.DEFCEB,DEFABF.DECD,()2,()2.SDEF2,SCEB18,SABF8.S四边形BCDFSCEBSDEF16.S四边形ABCDS四边形BCDFSABF16824.6(2014课标全国)如图,四边形ABCD是O的内接四边形,AB的延长线与DC的延长线交于点E,且CBCE.(1)证明:DE;(2)设AD不是O的直径,AD的中点为M,且MBMC,证明:ADE为等边三角形证明(1)由题设知,A,B,C,D四点共圆,所以DCBE,由已知CBCE得CBEE,故DE.(2)如图,设BC的中点为N,连结MN,则由MBMC知MNBC,故O在直线MN上又AD不是O的直径,M为AD的中点,故OMAD,即MNAD.所以ADBC,故ACBE.又CBEE,故AE,由(1)知,DE,所以ADE为等边三角形B组专项能力提升(时间:30分钟)1.如图所示,在RtABC中,ACB90,M是BC的中点,CNAM,垂足是N,求证:ABBMAMBN.证明CM2MNAM,又M是BC的中点,BM2MNAM,又BMNAMB,AMBBMN,ABBMAMBN.2.如图所示,在ABC中,AD为BC边上的中线,F为AB上任意一点,CF交AD于点E.求证:AEBF2DEAF.证明过点D作AB的平行线DM交AC于点M,交FC于点N.在BCF中,D是BC的中点,DNBF
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 吸痰技术试题及答案
- 铆工技术理论试题及答案
- 2025年春季部编版初中数学教学设计八年级下册第2课时 正方形的判定
- 《2025设备租赁合同范本共享》
- 2025面的合同租赁合同范本
- 公司财税知识培训课件
- 搞笑反诈骗课件
- 国际市场营销(第7版·数字教材版)课件 第1-7章 国际市场营销导论-国际大市场营销
- 求职路上如何应对蒙古特色面试题?实战技巧分享
- 《2025年物流公司挂靠合作协议》
- 《电工》国家职业技能鉴定教学计划及大纲
- 零星维修工程(技术标)
- 篮球投篮教学的课件
- 园林绿化施工现场组织协调方案与措施
- 中专生招生管理办法细则
- 2025年度江苏行政执法资格考试模拟卷及答案(题型)
- 续保团队职场管理办法
- 2025至2030直接甲醇燃料电池(DMFC)行业发展趋势分析与未来投资战略咨询研究报告
- 江苏南京师范大学附属中学2024~2025学年高一下册6月期末考试数学试题学生卷
- 医院质控科服务质量职责
- 船舶公司维修管理制度
评论
0/150
提交评论