高考数学新一轮总复习 7.8 立体几何中的向量方法考点突破课件(Ⅱ)理.ppt_第1页
高考数学新一轮总复习 7.8 立体几何中的向量方法考点突破课件(Ⅱ)理.ppt_第2页
高考数学新一轮总复习 7.8 立体几何中的向量方法考点突破课件(Ⅱ)理.ppt_第3页
高考数学新一轮总复习 7.8 立体几何中的向量方法考点突破课件(Ⅱ)理.ppt_第4页
高考数学新一轮总复习 7.8 立体几何中的向量方法考点突破课件(Ⅱ)理.ppt_第5页
已阅读5页,还剩52页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第8课时立体几何中的向量方法 空间角与距离 理科 一 考纲点击能用向量方法解决直线与直线 直线与平面 平面与平面的夹角的计算问题 了解向量方法在研究立体几何问题中的应用 二 命题趋势1 从考查内容看 本节是高考的必考内容 主要考查利用空间向量的坐标运算解决求空间角 异面直线所成角 直线与平面所成角 二面角 及距离等问题 2 从考查形式看 主要以解答题的形式出现 侧重于考查空间向量的应用 属中档题 1 空间向量与空间角的关系 1 设异面直线l1 l2的方向向量分别为m1 m2 则l1与l2所成的角 满足cos cos m1 m2 对点演练 2 设直线l的方向向量和平面 的法向量分别为m n 则直线l与平面 所成角 满足sin cos m n 如果平面的一条斜线与它在这个平面上的射影的方向向量分别是a 1 0 1 b 0 1 1 那么 这条斜线与平面所成的角是 a 90 b 30 c 45 d 60 对点演练 2 如图 n1 n2分别是二面角 l 的两个半平面 的法向量 则二面角的大小 满足cos cos n1 n2 或 cos n1 n2 对点演练 对点演练 1 利用平面的法向量求二面角的大小时 当求出两半平面 的向量n1 n2时 要根据向量坐标在图形中观察法向量的方向 从而确定二面角与向量n1 n2的夹角是相等 还是互补 2 求点到平面距离的方法 1 垂面法 借助面面垂直的性质来作垂线 其中过已知点确定已知面的垂面是关键 2 等体积法 转化为求三棱锥的高 3 等价转移法 4 法向量法 2012 上海 如图 在四棱锥p abcd中 底面abcd是矩形 pa 底面abcd e是pc的中点 已知ab 2 ad 2 pa 2 求 1 三角形pcd的面积 2 异面直线bc与ae所成的角的大小 题型一求异面直线所成的角 图 1 归纳提升 异面直线所成角范围是 0 90 若异面直线a b的方向向量为m n 异面直线a b所成角为 则cos cos m n 解题过程是 1 建系 2 求点坐标 3 表示向量 4 计算 证明垂直 只须验数量积是否为0 1 如图所示 在长方体abcd a1b1c1d1中 已知ab 4 ad 3 aa1 2 e f分别是线段ab bc上的点 且eb bf 1 求直线ec1与fd1所成的角的余弦值 针对训练 2013 全国新课标 如图 三棱柱abc a1b1c1中 ca cb ab aa1 baa1 60 1 证明 ab a1c 2 若平面abc 平面aa1b1b ab cb 求直线a1c与平面bb1c1c所成角的正弦值 题型二求直线与平面所成的角 解 1 证明 如图 取ab的中点o 连接oc oa1 a1b 因为ca cb 所以oc ab 由于ab aa1 baa1 60 故 aa1b为等边三角形 所以oa1 ab 因为oc oa1 o 所以ab 平面oa1c 又a1c 平面oa1c 故ab a1c 归纳提升 1 分别求出斜线和它所在平面内的射影直线的方向向量 转化为求两个方向向量的夹角 或其补角 2 通过平面的法向量来求 即求出斜线的方向向量与平面的法向量所夹的锐角 取其余角就是斜线和平面所成的角 针对训练 题型三求二面角 解 1 证明 连结ac1交a1c于点f 则f为ac1中点 又d是ab中点 连结df 则bc1 df 因为df 平面a1cd bc1 平面a1cd 所以bc1 平面a1cd 归纳提升 二面角的两种常用求解方法 1 分别求出二面角的两个面所在平面的法向量 然后通过两个平面的法向量的夹角得到二面角的大小 但要注意结合实际图形判断所求角为锐角还是钝角 2 分别在二面角的两个平面内找到与棱垂直且以垂足为起点的两个向量 则这两个向量的夹角的大小就是二面角的大小 3 如图 pa 平面abc ac bc pa ac 1 bc 则二面角a pb c的余弦值大小为 针对训练 题型四求空间距离 针对训练 典例 满分12分 如图 已知在长方体abcd a1b1c1d1中 ab 2 aa1 1 直线bd与平面aa1b1b所成的角为30 ae垂直bd于点e f为a1b1的中点 满分指导 利

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论