




已阅读5页,还剩19页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
能用解方程组的方法求两直线的交点坐标 掌握两点间的距离公式 点到直线的距离公式 会求两条平行直线间的距离 8 3直线的交点坐标与距离公式 1 两条直线是否相交的判断两直线是否有公共点 要看它们的方程是否有公共解 因此只要将两条直线l1和l2的方程联立 1 若方程组无解 则l1 l2 2 若方程组有且只有一个解 则l1与l2相交 3 若方程组有无数解 则l1与l2重合 2 点到直线距离公式点p x0 y0 到直线l ax by c 0的距离为 3 两平行线间的距离公式已知两条平行线直线l1和l2的一般式方程为l1 ax by c1 0 l2 ax by c2 0 则l1与l2的距离为 1 过点a 4 a 和点b 5 b 的直线与直线y x m平行 则 ab 的值为 a 6b c 2d 不能确定答案 b2 已知点 a 2 a 0 到直线l x y 3 0的距离为1 则a等于 a b 2 c 1d 1答案 c 3 直线l1经过点a 3 0 直线l2经过点b 0 4 且l1 l2 用d表示l1 l2间的距离 则 a d 5b 3 d 5c 0 d 5d 0 d 5答案 d4 直线l过点 2 1 且原点到l的距离是1 那么l的方程是 a x 1或3x 4y 5 0b y 1或3x 4y 5 0c y 1或4x 3y 5 0d x 1或4x 3y 5 0答案 c 直线l1 a1x b1y c1 0与直线l2 a2x b2y c2 0的交点 1 可通过解方程组求得 若方程组有唯一解 则l1与l2相交 若方程组无解 则直线l1 l2 若方程组有无数组解 则l1与l2重合 2 方程 a1x b1y c1 a2x b2y c2 0表示过l1与l2交点的直线 但不能表示直线l2 a2x b2y c2 0 如y y0 k x x0 不表示直线x x0 0 例1 直线l被两条直线l1 4x y 3 0和l2 3x 5y 5 0截得的线段的中点为p 1 2 求直线l的方程 解答 解法一 设直线l与l1的交点为a x0 y0 由已知条件 则直线l与l2的交点为b 2 x0 4 y0 并且满足即解得因此直线l的方程为 即3x y 1 0 解法二 设直线l的方程为y 2 k x 1 即kx y k 2 0 由得x 由得x 则 2 解得k 3 因此所求直线方程为y 2 3 x 1 即3x y 1 0 解法三 两直线l1和l2的方程为 4x y 3 3x 5y 5 0 将上述方程中 x y 换成 2 x 4 y 整理可得l1与l2关于 1 2 对称图形的方程 4x y 1 3x 5y 31 0 整理得3x y 1 0 变式1 如图 设一直线过点 1 1 它被两平行直线l1 x 2y 1 0 l2 x 2y 3 0所截的线段的中点在直线l3 x y 1 0上 求其方程 解答 与l1 l2平行且距离相等的直线方程为x 2y 2 0 设所求直线方程为 x 2y 2 x y 1 0 即 1 x 2 y 2 0 又直线过a 1 1 1 1 2 1 2 0 解得 所求直线方程为2x 7y 5 0 1 点p x0 y0 到直线l ax by c 0的距离d 在使用点到直线距离公式时 要注意将直线方程化为一般式 利用点到直线的距离公式可求三角形的高线的长度等 2 使用两平行线间的距离公式时 直线方程要化为一般式 同时要使x y前面的系数相等 求过点p 1 2 且与点a 2 3 和b 4 5 的距离相等的直线l的方程 解答 解法一 设直线l的方程为y 2 k x 1 即kx y k 2 0 由题意知 即 3k 1 3k 3 k 直线l的方程为y 2 x 1 即x 3y 5 0 当直线l的斜率不存在时 直线方程为x 1 也适合题意 例2 解法二 当ab l时 有k kab 直线l的方程为y 2 x 1 即x 3y 5 0 当l过ab中点时 线段ab中点为 1 4 直线ab方程为x 1 故所求直线l的方程为x 3y 5 0 或x 1 变式2 如图所示 正方形的中心点为c 1 0 一条边所在的直线方程是x 3y 5 0 求其他三边所在直线的方程 解答 设与x 3y 5 0平行的直线为x 3y c1 0 由题意 c1 5或c1 7 所求直线的方程为x 3y 7 0 设与x 3y 5 0垂直的直线为3x y c2 0 由题意 c2 9或c2 3 所求直线的方程为3x y 9 0或3x y 3 0 如直线l 1 3 x 1 2 y 2 5 0 无论 取任何实数直线l恒过一定点 定点坐标的求法大致有两种 1 将直线方程转化为 x y 2 3x 2y 5 0 通过解方程组 2 也可令 0 1通过特殊情况求出定点的坐标 然后证明定点坐标满足方程 1 3 x 1 2 y 2 5 0 例3 设直线l的方程为 a 1 x y 2 a 0 a r 1 若l在两坐标轴的截距相等 求l的方程 2 若l不经过第二象限 求实数a的取值范围 解答 1 若a 2 直线方程为3x y 0 显然a 1 当a 2时直线方程可化为 因此所求直线方程为3x y 0或x y 2 0 2 由 a 1 x y 2 a 0得a x 1 x y 2 0 无论a取何值 直线l过a 1 3 点 则直线l的斜率k 0 即 a 1 0 解得a 1 变式3 点p 2 1 到直线l 1 3 x 1 2 y 2 5 的距离为d 则d的取值范围是 解析 本题考查数形结合思想 以及分析 转化能力 本题要直接解很困难 注意到本题的形式结构 符合直线系的形式 故可从几何意义的角度考虑问题 将直线l的方程变为 x y 2 3x 2y 5 0 它表示过直线l1 x y 2 0 l2 3x 2y 5 0的交点且不包含第二条直线的所有直线 显然当直线过点p时距离最小为0 当直线过交点b 1 1 且与pb垂直时距离d最大为 但此时直线与已知直线l2重合 所以0 d 答案 a 方法规律 1 求两直线交点坐标就是解方程组 即把几何问题转化为代数问题 2 要理解 点点距 点线距 线线距 之间的联系及各公式的特点 特别提示 求两平行线间的距离时 一定化成l1 ax by c1 0 l2 ax by c2 0的形式 3 注意归纳题目类型 体会题目所蕴含的数学思想方法 如数形结合的思想 方程与函数的思想 分类讨论的思想 本小题满分12分 在平面直角坐标系中 已知矩形abcd的长为2 宽为1 ab ad边分别在x轴 y轴的正半轴上 a点与坐标原点重合 如图所示 将矩形折叠 使a点落在线段dc上 1 若折痕所在直线的斜率为k 试写出折痕所在直线的方程 2 求折痕的长的最大值 答题模板 解答 1 设折叠后a在dc边上对应的点为a 则折痕ef所在直线的斜率k 0 当k 0时 a 与d重合 ef所在直线方程为y 当k 0时 线段ef垂直平分oa 故直线oa 的方程为y x 则当a 与c重合时k 2 设oa 交ef于g点 则g点坐标为 得ef所在直线的方程为y kx 2 由 1 知线段ef的方程为y kx 2 k 0 当e与d重合时 e点坐标为 0 1 由 式得k 1 当f与b重合时 f点坐标为 2 0 由 式得k 2 令f k ef 2 则 当k 2 0 时 f k 递减 f k 的最大值为f 2 32 16 当k 1 2 时 可证f k 在 1 上递减 在 2 上递增 f 1 2 f 2 32 16 当k 2 1 时 f k 递增 f k f 1 2 综上可知f k 的最大值为32 16则 ef 的最大值为 分析点评 本题对直线方程 两点间的距离公式和分段函数问题进行了综合考查 在考查直线方程时是以折叠为背景 实质是考查对称问题 1 点与点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司节假日安全培训课件
- 建筑施工防火安全技术措施
- 综合部主任竞聘报告
- 企业安全管理工作计划三篇
- 《记承天诗夜游》课件
- 静脉溶栓术后护理措施
- 事诸父如事父课件
- 研究生学习进展与心得汇报
- 公司级安全培训签到表课件
- 公司级安全培训意义课件
- 环卫所内勤工作事迹
- 注塑设备维修培训课件模板
- 应急预案管理中的法律风险与责任防控
- 多源异构数据融合与知识图谱构建
- 邯郸城市介绍民俗文化旅游景点推介图文课件
- 超高强钢冷冲压三点弯曲与辊压弯曲性
- 基于双减背景下小学英语项目式学习创新研究 论文
- 人教版(2019)选择性必修第一册Unit+2+Using+Language+课件
- 使用智能手机教程课件
- 苏教版三年级数学(下册)《间隔排列》课件
- 2023-2023年中国工商银行校园招聘考试历年真题、考查知识点以及备考指导
评论
0/150
提交评论