已阅读5页,还剩95页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2 6对数与对数函数 数学苏 理 第二章函数概念与基本初等函数 基础知识 自主学习 题型分类 深度剖析 思想方法 感悟提高 练出高分 1 对数的概念如果ax n a 0且a 1 那么数x叫做以a为底n的对数 记作 其中叫做对数的底数 叫做真数 x logan a n 2 对数的性质与运算法则 1 对数的运算法则如果a 0且a 1 m 0 n 0 那么 loga mn loga logamn n r 2 对数的性质 logaan a 0且a 1 logam logan logam logan nlogam logam n n 3 对数的重要公式 换底公式 a b均大于零且不等于1 logab 推广logab logbc logcd logbn logad 3 对数函数的图象与性质 0 r 1 0 1 0 y 0 y 0 y 0 y 0 增函数 减函数 4 反函数指数函数y ax与对数函数互为反函数 它们的图象关于直线对称 y x y logax 思考辨析 判断下面结论是否正确 请在括号中打 或 1 若log2 log3x log3 log2y 0 则x y 5 2 2log510 log50 25 5 3 已知函数f x lgx 若f ab 1 则f a2 f b2 2 4 当x 1时 logax 0 5 当x 1时 若logax logbx 则a b 6 函数f x lg与g x lg x 2 lg x 2 是同一个函数 a b c 解析 0 f x 是r上的偶函数 它的图象关于y轴对称 f x 在 0 上为增函数 f x 在 0 上为减函数 解析 答案 思维升华 由x log43 得4x 3 即2x 解析 答案 思维升华 由x log43 得4x 3 即2x 解析 答案 思维升华 在对数运算中 要熟练掌握对数的定义 灵活使用对数的运算性质 换底公式和对数恒等式对式子进行恒等变形 多个对数式要尽量先化成同底的形式再进行运算 解析 答案 思维升华 解析 答案 思维升华 因为f 1 log21 0 所以f f 1 f 0 2 因为log3 0 1 2 1 3 所以 所以f f 1 f log3 2 3 5 解析 答案 思维升华 因为f 1 log21 0 所以f f 1 f 0 2 因为log3 0 1 2 1 3 所以 所以f f 1 f log3 2 3 5 5 解析 答案 思维升华 在对数运算中 要熟练掌握对数的定义 灵活使用对数的运算性质 换底公式和对数恒等式对式子进行恒等变形 多个对数式要尽量先化成同底的形式再进行运算 解析 答案 思维升华 5 所以f 2 log23 f 3 log23 而3 log23 4 所以f 3 log23 解析 答案 思维升华 log23 log49 b f f log49 f log49 解析 答案 思维升华 又f x 是定义在 上的偶函数 且在 0 上是增函数 故f x 在 0 上是单调递减的 f 0 2 0 6 f f log47 即c b a 解析 答案 思维升华 又f x 是定义在 上的偶函数 且在 0 上是增函数 故f x 在 0 上是单调递减的 f 0 2 0 6 f f log47 即c b a 解析 答案 思维升华 c b a 解析 答案 思维升华 c b a 对数函数值大小的比较一般有三种方法 单调性法 在同底的情况下直接得到大小关系 若不同底 先化为同底 解析 答案 思维升华 c b a 中间值过渡法 即寻找中间数联系要比较的两个数 一般是用 0 1 或其他特殊值进行 比较传递 图象法 根据图象观察得出大小关系 例2 2 作出函数y log2 x 1 的图象 由图象指出函数的单调区间 并说明它的图象可由函数y log2x的图象经过怎样的变换而得到 解析 思维升华 思维点拨 例2 2 作出函数y log2 x 1 的图象 由图象指出函数的单调区间 并说明它的图象可由函数y log2x的图象经过怎样的变换而得到 从基本函数y log2x出发 到y log2 x 再到y log2 x 1 解析 思维升华 思维点拨 例2 2 作出函数y log2 x 1 的图象 由图象指出函数的单调区间 并说明它的图象可由函数y log2x的图象经过怎样的变换而得到 解作出函数y log2x的图象 将其关于y轴对称得到函数y log2 x 的图象 再将图象向左平移1个单位长度就得到函数y log2 x 1 的图象 如图所示 解析 思维升华 思维点拨 例2 2 作出函数y log2 x 1 的图象 由图象指出函数的单调区间 并说明它的图象可由函数y log2x的图象经过怎样的变换而得到 由图知 函数y log2 x 1 的递减区间为 1 递增区间为 1 解析 思维升华 思维点拨 例2 2 作出函数y log2 x 1 的图象 由图象指出函数的单调区间 并说明它的图象可由函数y log2x的图象经过怎样的变换而得到 解析 思维升华 思维点拨 研究对数型函数的图象时 一般从最基本的对数函数的图象入手 通过平移 伸缩 对称变换得到对数型函数的图象 跟踪训练2 1 已知a 21 2 b 0 8 c 2log52 则a b c的大小关系为 c 2log52 log522 log55 1 20 8 b 故c b a c b a 2 已知函数f x loga x b a 0且a 1 的图象过两点 1 0 和 0 1 则a b 则f 1 loga 1 b 0且f 0 loga 0 b 1 2 2 解析 思维升华 解 a 0且a 1 设t x 3 ax 则t x 3 ax为减函数 x 0 2 时 t x 最小值为3 2a 当x 0 2 时 f x 恒有意义 即x 0 2 时 3 ax 0恒成立 解析 思维升华 3 2a 0 a 又a 0且a 1 a 0 1 解析 思维升华 解决对数函数综合问题时 无论是讨论函数的性质 还是利用函数的性质 1 要分清函数的底数是a 0 1 还是a 1 解析 思维升华 2 确定函数的定义域 无论研究函数的什么性质或利用函数的某个性质 都要在其定义域上进行 3 如果需将函数解析式变形 一定要保证其等价性 否则结论错误 解析 思维升华 解析 思维升华 例3 2 是否存在这样的实数a 使得函数f x 在区间 1 2 上为减函数 并且最大值为1 如果存在 试求出a的值 如果不存在 请说明理由 解t x 3 ax a 0 函数t x 为减函数 f x 在区间 1 2 上为减函数 y logat为增函数 a 1 x 1 2 时 t x 最小值为3 2a f x 最大值为f 1 loga 3 a 例3 2 是否存在这样的实数a 使得函数f x 在区间 1 2 上为减函数 并且最大值为1 如果存在 试求出a的值 如果不存在 请说明理由 解析 思维升华 例3 2 是否存在这样的实数a 使得函数f x 在区间 1 2 上为减函数 并且最大值为1 如果存在 试求出a的值 如果不存在 请说明理由 故不存在这样的实数a 使得函数f x 在区间 1 2 上为减函数 并且最大值为1 解析 思维升华 例3 2 是否存在这样的实数a 使得函数f x 在区间 1 2 上为减函数 并且最大值为1 如果存在 试求出a的值 如果不存在 请说明理由 解决对数函数综合问题时 无论是讨论函数的性质 还是利用函数的性质 1 要分清函数的底数是a 0 1 还是a 1 解析 思维升华 例3 2 是否存在这样的实数a 使得函数f x 在区间 1 2 上为减函数 并且最大值为1 如果存在 试求出a的值 如果不存在 请说明理由 2 确定函数的定义域 无论研究函数的什么性质或利用函数的某个性质 都要在其定义域上进行 3 如果需将函数解析式变形 一定要保证其等价性 否则结论错误 解析 思维升华 跟踪训练3已知函数f x x2 2ax 3 1 若函数f x 的定义域为 1 3 求实数a的值 1 3 得2a 1 3 所以a 2 即实数a的值为2 2 若函数f x 的定义域为r 值域为 1 求实数a的值 则f x max 1 所以y x2 2ax 3的最小值为ymin 2 由y x2 2ax 3 x a 2 3 a2 得3 a2 2 所以a2 1 所以a 1 3 若函数f x 在 1 上为增函数 求实数a的取值范围 所以实数a的取值范围是 1 2 高频小考点2利用函数性质比较幂 对数的大小 思维点拨 解析 温馨提醒 典例 1 设a 0 50 5 b 0 30 5 c log0 30 2 则a b c的大小关系是 高频小考点2利用函数性质比较幂 对数的大小 利用幂函数y x0 5和对数函数y log0 3x的单调性 结合中间值比较a b c的大小 思维点拨 解析 温馨提醒 典例 1 设a 0 50 5 b 0 30 5 c log0 30 2 则a b c的大小关系是 高频小考点2利用函数性质比较幂 对数的大小 典例 1 设a 0 50 5 b 0 30 5 c log0 30 2 则a b c的大小关系是 根据幂函数y x0 5的单调性 可得0 30 5log0 30 3 1 即c 1 所以b a c 思维点拨 解析 温馨提醒 b a c 高频小考点2利用函数性质比较幂 对数的大小 1 比较幂 对数的大小可以利用数形结合和引入中间量利用函数单调性两种方法 思维点拨 解析 温馨提醒 典例 1 设a 0 50 5 b 0 30 5 c log0 30 2 则a b c的大小关系是 b a c 高频小考点2利用函数性质比较幂 对数的大小 2 解题时要根据实际情况来构造相应的函数 利用函数单调性进行比较 如果指数相同 而底数不同则构造幂函数 若底数相同而指数不同则构造指数函数 若引入中间量 一般选0或1 思维点拨 解析 温馨提醒 典例 1 设a 0 50 5 b 0 30 5 c log0 30 2 则a b c的大小关系是 思维点拨 解析 温馨提醒 2 已知a b c 则a b c的大小关系是 思维点拨 解析 温馨提醒 化成同底的指数式 只需比较log23 4 log43 6 log30 3 log3的大小即可 可以利用中间值或数形结合进行比较 2 已知a b c 则a b c的大小关系是 方法一在同一坐标系中分别作出函数y log2x y log3x y log4x的图象 如图所示 思维点拨 解析 温馨提醒 2 已知a b c 则a b c的大小关系是 由图象知 log23 4 log3 log43 6 思维点拨 解析 温馨提醒 2 已知a b c 则a b c的大小关系是 log43 61 log43 6 log3 log23 4 log3 log43 6 思维点拨 解析 温馨提醒 2 已知a b c 则a b c的大小关系是 2 已知a b c 则a b c的大小关系是 由于y 5x为增函数 即 故a c b 思维点拨 解析 温馨提醒 a c b 1 比较幂 对数的大小可以利用数形结合和引入中间量利用函数单调性两种方法 思维点拨 解析 温馨提醒 2 已知a b c 则a b c的大小关系是 a c b 2 解题时要根据实际情况来构造相应的函数 利用函数单调性进行比较 如果指数相同 而底数不同则构造幂函数 若底数相同而指数不同则构造指数函数 若引入中间量 一般选0或1 思维点拨 解析 温馨提醒 2 已知a b c 则a b c的大小关系是 a c b 2 解题时要根据实际情况来构造相应的函数 利用函数单调性进行比较 如果指数相同 而底数不同则构造幂函数 若底数相同而指数不同则构造指数函数 若引入中间量 一般选0或1 思维点拨 解析 温馨提醒 2 已知a b c 则a b c的大小关系是 a c b 思维点拨 解析 温馨提醒 3 已知a log23 log2 b log29 log2 c log32 则a b c的大小关系是 思维点拨 解析 温馨提醒 先利用对数式的运算性质比较a与b的大小关系 再利用中间值比较a b c的大小 3 已知a log23 log2 b log29 log2 c log32 则a b c的大小关系是 思维点拨 解析 温馨提醒 3 已知a log23 log2 b log29 log2 c log32 则a b c的大小关系是 a log23 log2 log23 b log29 log2 log23 a b 又 函数y logax a 1 为增函数 a log23 log22 1 c log32 log33 1 a b c a b c 1 比较幂 对数的大小可以利用数形结合和引入中间量利用函数单调性两种方法 思维点拨 解析 温馨提醒 3 已知a log23 log2 b log29 log2 c log32 则a b c的大小关系是 a b c 2 解题时要根据实际情况来构造相应的函数 利用函数单调性进行比较 如果指数相同 而底数不同则构造幂函数 若底数相同而指数不同则构造指数函数 若引入中间量 一般选0或1 思维点拨 解析 温馨提醒 3 已知a log23 log2 b log29 log2 c log32 则a b c的大小关系是 a b c 2 解题时要根据实际情况来构造相应的函数 利用函数单调性进行比较 如果指数相同 而底数不同则构造幂函数 若底数相同而指数不同则构造指数函数 若引入中间量 一般选0或1 思维点拨 解析 温馨提醒 3 已知a log23 log2 b log29 log2 c log32 则a b c的大小关系是 a b c 方法与技巧 1 对数值取正 负值的规律当a 1且b 1或00 当a 1且01时 logab 0 2 对数函数的定义域及单调性在对数式中 真数必须是大于0的 所以对数函数y logax的定义域应为 x x 0 对数函数的单调性和a的值有关 因而 在研究对数函数的单调性时 要按01进行分类讨论 方法与技巧 3 比较幂 对数大小有两种常用方法 1 数形结合 2 找中间量结合函数单调性 4 多个对数函数图象比较底数大小的问题 可通过比较图象与直线y 1交点的横坐标进行判定 失误与防范 1 在运算性质logam logam中 要特别注意条件 在无m 0的条件下应为logam loga m n 且 为偶数 2 指数函数y ax a 0 且a 1 与对数函数y logax a 0 且a 1 互为反函数 应从概念 图象和性质三个方面理解它们之间的联系与区别 失误与防范 3 解决与对数函数有关的问题时需注意两点 1 务必先研究函数的定义域 2 注意对数底数的取值范围 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 1 2014 福建改编 若函数y logax a 0 且a 1 的图象如图所示 则下列函数图象正确的是 2 3 4 5 6 7 8 9 10 1 解析由题意得y logax a 0 且a 1 的图象过 3 1 点 可解得a 3 图 中 y 3 x x 显然图象错误 图 中 y x3 由幂函数图象可知正确 图 中 y x 3 x3 显然与所画图象不符 图 中 y log3 x 的图象与y log3x的图象关于y轴对称 显然不符 答案 2 3 4 5 6 7 8 9 10 1 2 函数f x loga ax 3 在 1 3 上单调递增 则a的取值范围是 解析由于a 0 且a 1 故u ax 3为增函数 因为函数f x 为增函数 则f x logau必为增函数 因此a 1 又y ax 3在 1 3 上恒为正 所以a 3 0 即a 3 3 2 3 4 5 6 7 8 9 10 1 3 已知x ln y log52 z 则x y z的大小关系为 解析 x ln lne x 1 综上可得 y z x y z x 2 3 4 5 6 7 8 9 10 1 4 若loga a2 1 loga2a 0 则a的取值范围是 解析由题意得a 0且a 1 故必有a2 1 2a 又loga a2 1 loga2a 0 所以0 a 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 a 1或 1 a 0 答案 1 0 1 2 3 4 5 6 7 8 9 10 1 6 计算 lg lg25 2 10 20 20 2 3 4 5 6 7 8 9 10 1 解析当x 0时 3x 1 1 x 1 0 10时 log2x 1 x 2 x 2 综上所述 x的取值范围为 12 x 12 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 a2 a 0 a1 此时不合题意 2 3 4 5 6 7 8 9 10 1 9 已知函数f x loga x 1 loga 1 x a 0且a 1 1 求f x 的定义域 解要使函数f x 有意义 故所求函数f x 的定义域为 x 1 x 1 2 3 4 5 6 7 8 9 10 1 2 判断f x 的奇偶性并予以证明 解由 1 知f x 的定义域为 x 1 x 1 且f x loga x 1 loga 1 x loga x 1 loga 1 x f x 故f x 为奇函数 2 3 4 5 6 7 8 9 10 1 3 当a 1时 求使f x 0的x的解集 解因为当a 1时 f x 在定义域 x 1 x 1 内是增函数 所以使f x 0的x的解集是 x 0 x 1 2 3 4 5 6 7 8 9 10 1 10 已知函数y x2 ax a 在区间 上是增函数 求a的取值范围 解函数y x2 ax a 是由函数y t和t x2 ax a复合而成 因为函数y t在区间 0 上单调递减 而函数t x2 ax a在区间 上单调递减 2 3 4 5 6 7 8 9 10 1 又因为函数y x2 ax a 在区间 上是增函数 2 3 4 5 1 2 3 4 5 1 1 设f x lg是奇函数 则使f x 0的x的取值范围是 解析由f x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年导游业务知识竞赛题库附答案(完整版)
- 2025年传染病防治法和信息报告管理测试题
- 2025年二级建造师考试试卷重点附答案详解
- 国企总工考试试题题库及答案解析
- 学校食堂食品安全员日管控培训测试题及答案解析2
- 班会课《食品安全》课件
- 企业内交通安全培训课件
- 一二年级安全教育课件
- 度建筑工程继续教育考试及答案
- 建筑行业资料员考试题库试卷
- 2025年新合同管理部试题及答案
- 2026年辽宁现代服务职业技术学院单招职业技能测试题库带答案
- 25秋国家开放大学《人文英语3》形考任务参考答案
- 服装店店长岗位职责详述
- 2026年滕州工作者考试试题及答案
- Unit5Period5Readingforwriting课件外研版英语八年级上册
- 神经科癫痫患者的日常护理指南
- (人教2024版PEP)英语一年级上册全册课时练习(含解析)新教材
- 2025年农商银行面试题目及答案
- 视光中心检查表
- (14)普通高中音乐课程标准日常修订版(2017年版2025年修订)
评论
0/150
提交评论