高中数学 111分类加法计数原理与分步乘法计数原理课件 新人教A版选修23.ppt_第1页
高中数学 111分类加法计数原理与分步乘法计数原理课件 新人教A版选修23.ppt_第2页
高中数学 111分类加法计数原理与分步乘法计数原理课件 新人教A版选修23.ppt_第3页
高中数学 111分类加法计数原理与分步乘法计数原理课件 新人教A版选修23.ppt_第4页
高中数学 111分类加法计数原理与分步乘法计数原理课件 新人教A版选修23.ppt_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

课标要求 1 1分类加法计数原理与分步乘法计数原理 理解分类加法计数原理与分步乘法计数原理 会用这两个原理分析和解决一些简单的实际计数问题 1 2 理解两个计数原理的内容及它们的区别 难点 两个计数原理的应用 重点 应用两个计数原理时 合理选择分类还是分步 易混点 核心扫描 1 2 3 分类加法计数原理与分步乘法计数原理 自学导引 n m n n m n 想一想 两个原理中对 完成一件事 的要求有什么不同 提示分类加法计数原理中 每一类方案中的每一种方法都能 完成一件事 分步乘法计数原理中 只有两步全部完成 才算 完成一件事 分类加法计数原理与分步乘法计数原理的区别与联系 名师点睛 题型一分类加法计数原理的应用 在所有的两位数中 个位数字大于十位数字的两位数共有多少个 思路探索 该问题与计数有关 完成这件事只要两位数的个位 十位确定了 这件事就算完成了 因此只要考虑十位或个位上的数字情况进行分类即可 例1 解法一根据题意将十位上的数字分别是1 2 3 4 5 6 7 8的情况分成8类 在每一类中满足题目条件的两位数分别是8个 7个 6个 5个 4个 3个 2个 1个 由分类加法计数原理 符合题意的两位数的个数共有 8 7 6 5 4 3 2 1 36 个 法二根据题意将个位上的数字分别是2 3 4 5 6 7 8 9的情况分成8类 在每一类中满足题目条件的两位数分别是1个 2个 3个 4个 5个 6个 7个 8个 由分类加法计数原理 符合题意的两位数的个数共有 1 2 3 4 5 6 7 8 36 个 规律方法分类加法计数原理要求每一类中的各种方法都是相互独立的 且每一类方法中的每一种方法都可以独立地完成这件事 在应用该原理解题时 首先要根据问题的特点 确定好分类的标准 分类时应满足 完成一件事的任何一种方法 必属于某一类且仅属于某一类 书架上层放有15本不同的数学书 中层放有16本不同的语文书 下层放有14本不同的化学书 某人从中取出一本书 有多少种不同的取法 解要完成 取一本书 这件事有三类不同的取法 第1类 从上层取一本数学书有15种不同的取法 第2类 从中层取一本语文书有16种不同方法 第3类 从下层取一本化学书有14种不同方法 其中任何一种取法都能独立完成取一本书这件事 故从中取一本书的方法种数为15 16 14 45 变式1 已知集合m 3 2 1 0 1 2 p a b a b m 表示平面上的点 问 1 点p可表示平面上多少个不同的点 2 点p可表示平面上多少个第二象限内的点 思路探索 完成 确定点p 这件事 需要依次确定点p的横 纵坐标 应运用分步乘法计数原理求解 解 1 确定平面上的点p a b 可分两步完成 第一步确定a的值 有6种不同方法 第二步确定b的值 也有6种不同方法 根据分步乘法计数原理 得到平面上点p的个数为6 6 36 题型二分步乘法计数原理的应用 例2 2 确定平面上第二象限内的点p 可分两步完成 第一步确定a的值 由于a 0 所以有3种不同方法 第二步确定b的值 由于b 0 所以有2种不同方法 由分步乘法计数原理 得到平面上第二象限内的点p的个数为3 2 6 规律方法利用分步乘法计数原理解决问题应注意 1 要按事件发生的过程合理分步 即分步是有先后顺序的 2 各步中的方法互相依存 缺一不可 只有各个步骤都完成才算完成这件事 乒乓球队的10名队员中有3名主力队员 派5名参加比赛 3名主力队员要安排在第一 三 五位置 其余7名队员选2名安排在第二 四位置 求不同的出场安排共有多少种 解按出场位置顺序逐一安排 第一位置队员的安排有3种方法 第二位置队员的安排有7种方法 第三位置队员的安排有2种方法 第四位置队员的安排有6种方法 第五位置队员的安排只有1种方法 由分步乘法计数原理知 不同的出场安排方法有3 7 2 6 1 252 种 变式2 现有高一四个班的学生34人 其中一 二 三 四班各7人 8人 9人 10人 他们自愿组成数学课外小组 1 选其中一人为负责人 有多少种不同的选法 2 每班选一名组长 有多少种不同的选法 3 推选两人做中心发言 这两人需来自不同的班级 有多少种不同的选法 题型三两个原理的综合应用 例3 规范解答 1 分四类 第一类 从一班学生中选1人 有7种选法 第二类 从二班学生中选1人 有8种选法 第三类 从三班学生中选1人 有9种选法 第四类 从四班学生中选1人 有10种选法 所以 共有不同的选法n 7 8 9 10 34 种 4分 2 分四步 第一 二 三 四步分别从一 二 三 四班学生中选一人任组长 所以 共有不同的选法n 7 8 9 10 5040 种 8分 3 分六类 每类又分两步 从一 二班学生中各选1人 有7 8种不同的选法 从一 三班学生中各选1人 有7 9种不同的选法 从一 四班学生中各选1人 有7 10种不同的选法 从二 三班学生中各选1人 有8 9种不同的选法 从二 四班学生中各选1人 有8 10种不同的选法 从三 四班学生中各选1人 有9 10种不同的选法 所以 共有不同的选法n 7 8 7 9 7 10 8 9 8 10 9 10 431 种 12分 题后反思 1 在处理具体的应用题时 首先必须弄清是 分类 还是 分步 其次要搞清 分类 或 分步 的具体标准是什么 选择合理的标准处理事件 关键是看能否独立完成这件事 可以避免计数的重复或遗漏 2 对于一些比较复杂的既要运用分类加法计数原理又要运用分步乘法计数原理的问题 我们可以恰当地画出示意图或列出表格 使问题更加直观 清晰 在7名学生中 有3名会下象棋但不会下围棋 有2名会下围棋但不会下象棋 另2名既会下象棋又会下围棋 现从这7人中选2人分别参加象棋比赛和围棋比赛 共有多少种不同的选法 解分四类求解 1 从3名只会下象棋的学生中选1名参加象棋比赛 同时从2名只会下围棋的学生中选1名参加围棋比赛有3 2 6种选法 2 从3名只会下象棋的学生中选1名参加象棋比赛 同时从2名既会下象棋又会下围棋的学生中选1名参加围棋比赛有3 2 6种选法 变式3 3 从2名只会下围棋的学生中选1名参加围棋比赛 同时从2名既会下象棋又会下围棋的学生中选1名参加象棋比赛有2 2 4种选法 4 从2名既会下象棋又会下围棋的学生中选1名参加象棋比赛 剩下的一名参加围棋比赛 有2 1 2种选法 根据分类加法计数原理 一共有6 6 4 2 18种不同的选法 分类讨论思想是计数原理的重要思想 尤其体现在两个原理的综合应用上 对于 完成某件事 大多根据实际进行合理分类 尤其对于涂色问题 因为问题解决稍显复杂 既能考查两个原理的应用 又能体现分类讨论思想 倍受命题者的青睐 方法技巧分类讨论思想在计数原理中的应用 示例 如图有4个编号为1 2 3 4的小三角形 要在每一个小三角形中涂上红 黄 蓝 白 黑五种颜色中的一种 并且相邻的小三角形颜色不同 共有多少种不同的涂色方法 思路分析 明确用5种颜色涂4个区域 分别考虑1 3同色和1 3不同色两种情况分类讨论说明 解分为两类 第一类 若1 3同色 则1有5种涂法 2有4种涂法 3有1种涂法 与1相同 4有4种涂法 故n1 5 4 1 4 80 种 第二类 若1 3不同色 则1有

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论