已阅读5页,还剩195页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
光学篇 光学篇 光学 以光的直线传播为基础 光的独立传播定律 光的反射和折射定律 实验基础 光的干涉 衍射 偏振现象 理论基础 麦克斯韦电磁场理论 模型 电磁波 涉及范围 光的传播及其规律 实验基础 光电效应 康普顿效应 理论基础 量子论 模型 光量子 涉及范围 光和物质的相互作用 光是电磁波 一 电磁波的产生 电磁波是交变电磁场在空间的传播 2 电磁波是横波 3 电场与磁场大小的关系 4 波速 真空中 5 电磁波的能量密度 光是横波的判据 光是一种电磁波 光矢量用矢量表示光矢量 它在引起人眼视觉和底片感光上起主要作用 偏振现象 二 光是电磁波 可见光七彩颜色的波长和频率范围 14 1光源光的相干性 14 2光程光程差 14 4薄膜干涉 14 5迈克耳逊干涉仪 第十四章波动光学 第一部分光的干涉 14 3杨氏干涉实验 第二部分光的衍射 14 9X射线的衍射布拉格方程 14 8衍射光栅 14 6光的衍射现象惠更斯 菲涅耳原理 14 7单缝和圆孔的夫琅和费衍射 第三部分光的偏振 14 10自然光和偏振光 14 11偏振片的起偏和检偏马吕斯定律 14 12反射和折射时光的偏振 14 13双折射现象 14 1光源光波的相干性 一 光源 1 热辐射 2 电致发光 3 光致发光 4 化学发光 自发辐射 5 同步辐射 6 激光 受激辐射 发光机理 光源的最基本发光单元是分子 原子 当原子吸收外界能量后 由低能级跃迁到高能级 但在高能级不稳定 又会从高能级跳回低能级 低能级 L c 高能级 2 各原子发光是随机的 无固定相位差 1 原子每次发光的时间很短 只有10 8秒 对应的波列的长度称为相干长度 注意 两个频率相同的钠光灯不能产生干涉现象 即使是同一个单色光源的两部分发出的光 也不能产生干涉 无干涉现象 1 普通光源 属于自发辐射 结论 普通光源发光具有独立性 随机性 间歇性 1 一个分子 或原子 在一段时间内发出一列光波 发光时间持续约10 8 10 10s 间歇性 2 同一分子在不同时刻所发光的频率 振动方向不一定相同 随机性 独立性 非相干 不同原子发的光 非相干 同一原子先后发的光 3 各分子在同一时刻所发光的频率 振动方向 相位也不一定相同 独立性 随机性 2 激光光源 受激辐射 激光光源能发出频率 相位 振动方向 传播方向相同的光 二 光的单色性 单色光 具有同一波长 频率 的光 光学的理想化模型 同一种原子组成的光源发出的光波频率也有一定的宽度 越小 谱线的单色性越好 复色光 各种频率复合的光称为复色光 普通光源所发光为复色光 单色光源发光为单色光 激光为最好的单色光源 谱线宽度 I0 2 I0是谱线最大强度 处的谱线的波长范围 或频率范围 普通单色光的谱线宽度 10 3 0 1nm激光的谱线宽度 10 9 10 6nm 越小 光的单色性就越好 产生单色光的方法 1 利用色散 2 利用滤波片 3 利用单色光源 4 激光 三 光的相干性 1 干涉现象 两列光波相遇时 出现稳定的明暗相间花样称为光的干涉现象 2 相干光 满足相干条件 1 频率相同 2 振动方向相同 3 相位差恒定 一般两独立普通光源发出的光不是相干光 激光除外 只有同一光源 同一发光区域 同一时刻发出的光 即同一原子 同一时刻 才满足相干条件 3 普通光源获得相干光的途径 相干光只能从一个原子一次发光中获得 1 分波面法 2 分振幅法 四 如何获得相干光 1 分波阵面法 从点光源发出的同一波列的同一波面上 取出两个次波源 这两个此波源为相干光源 2 分振幅法 将光束中的每个波列都分成两列 二分波列为相干光 薄膜 光的干涉部分主要讨论杨氏双缝干涉和薄膜干涉 白光下的肥皂膜 蝉翅在阳光下 14 2光程光程差 14 2光程光程差 大学物理 一光程光程差 为什么要引入光程的概念 例子 相干光源s1 s2初相相同 到达p的距离相同 但经过的媒质不同 p点的干涉结果如何 结论 p点的干涉结果取决于两相干光在p点的相位差 p点的相位差 计算能否化简呢 光在真空中走r长的距离 相位改变了 真空中波长 光在媒质中走r长的距离 相位改变了 因光通过媒质时频率不变 媒质中波长 媒质中的波长 光在媒质中走r长的路相位改变了 结论 光在媒质中走过r的路程引起的相位变化 等于光在真空中走nr路程引起的相位变化 定义 光波在某一媒质中所经历的几何路程与这媒质的折射率的乘积为光程 用L表示 则 1 光程 P点的相位差 2 光程差 相位差和光程差的关系 引入光程这个概念的目的就是把媒质中的问题折算到真空中来处理 这样只需知道真空中的波长即可求得相位差 由光程差计算 相位差 光程 多种介质 二 透镜不引起附加光程差 通过光轴的光线波程最短 但在透镜中的光程长 远离光轴的光线波程长 但在透镜中的光程短 总的来讲 各条光线的光程都是相同的 例1在相同时间内 一束波长为 的单色光在空气中和玻璃中传播的距离相同吗 走过的光程相同吗 解 空气中传播的距离 玻璃中传播的距离 空气中传播的光程 玻璃中传播的光程 解 例2如图计算p点的光程差 14 3杨氏双缝干涉 14 3杨氏双缝干涉 大学物理 杨 T Young 在1801年首先发现光的干涉现象 并首次测量了光波的波长 采用分波面法获得相干光 一 杨氏双缝干涉实验 一杨氏双缝干涉实验 1 实验装置 点源分波面相遇 明条纹位置 明条纹位置 明条纹位置 2 现象 与缝平行 等宽 等间距 明暗相间 对称分布的干涉条纹 1 光程差 二 双缝干涉基本规律 干涉减弱 干涉加强 暗纹中心 明纹中心 2 干涉条纹位置 每一条纹都对应着一定的光程差 相位差 如第三级明纹对应的波程差为3 思考 如D 不变 而2a减小 某级条纹的位置如何变化 3 干涉条纹形状及间距 形状 明暗相间的直条纹 平行于狭缝 间距 条纹均匀分布 相邻两条明纹或暗纹的距离 级次 中间条纹级次低 以0级明纹为中心 两边对称 0级明纹为白色 其余明纹为彩色条纹 4 白光入射 k级彩色亮纹所在的位置坐标 5 强度分布 亮纹 暗纹 光强极大位置 光强极小位置 两光线光程差 1 屏上相邻明条纹中心或相邻暗条纹中心间距为 一系列等间距的明暗相间条纹 4 当用白光作为光源时 在零级白色中央条纹两边对称地排列着几条彩色条纹 光强分布 讨论 2 已知2a D及 x 可测 3 x正比 D 反比a 第k级光谱的宽度 谱线重叠满足的条件为 6条纹的重叠 当波长 1的第k1级谱线与波长 2的第k2级谱线重叠时 它们有相同的光程差 k越大 光谱越宽 级数较高的谱线会发生重叠 复色光的波长范围 例1在杨氏实验装置中 采用加有蓝绿色滤光片的白光光源 它的波长范围为 100nm 平均波长为 490nm 试估算从第几级开始 条纹将变得无法分辨 k 4 从第五级开始无法分辨 解 波长范围 平均波长 条纹开始重叠时有 可以清晰分辨的最大级次 与该干涉级次k对应的光程差 就是实现相干的最大光程差 即 只有在的条件下 才能观察到干涉条纹称为相干长度 每个原子发光持续的时间 t 10 10 10 8s 每一列光的长度l c t 相干长度 两列相干光能产生干涉所允许的最大光程差即在真空中光波列的长度l c t 相干时间 两列波到达干涉点所允许的最大时间差 即发光时间 三 相干长度和相干时间 如图 两列长度有限的相干波传递到媒质中一点 应满足什么条件才肯定会干涉 光程差不能太大 把能够产生干涉现象的最大光程差称为 相干长度 显然 相干长度等于一个波列的长度 1 菲涅耳双面镜 四 分波阵面干涉的其他实验 2 劳埃德镜 半波损失 光从光速较大 光疏介质 的介质射向光速较小 光密介质 的介质时反射光的相位较之入射光的相位跃变了 相当于反射光与入射光之间附加了半个波长的波程差 称为半波损失 例2 例3单色光照射到相距为0 2mm的双缝上 双缝与屏幕的垂直距离为1m 求 1 从第一条明纹到同侧旁第四明纹间的距离为7 5mm 求单色光的波长 解 1 根据双缝干涉明纹分布条件 明纹间距 得 将2a 0 2mm x1 4 7 5mm D 1000mm代入上式 当 600nm时 由相邻明纹间距公式 2 若入射光的波长为600nm 求相邻两明纹的距离 例4双缝一缝前若放一云母片 原中央明纹处被第7级明纹占据 已知 求 云母片厚度l 解 盖上云母片条纹为何移动 光程差改变 0级明纹的位置 上面 从S1和S2发出的相干光所对应的光程差 零级条纹对应的光程差为零 其位置应满足 所以零级条纹上移 移动一级条纹 光程差改变多少 光程差改变量 内容回顾 光的干涉 获得相干光的途径 分波振面法 分振幅法 杨氏双缝干涉 薄膜干涉 2019 12 28 52 14 4薄膜干涉 大学物理课程 2019 12 28 53 薄膜干涉 生活实例 2019 12 28 54 薄膜干涉 昆虫的彩色翅膀 蜂鸟颈部光环 2019 12 28 55 主要内容 薄膜干涉光程差 半波损失 干涉图样 几种特殊情况 2019 12 28 56 1 光程差 光程差由两部分组成 一部分是由于走过不同的媒质与几何路径而引起 另一部分是由半波损失而引起 D 薄膜干涉 2019 12 28 57 设 两束反射光的光程差 两束透射光的光程差 薄膜干涉 2019 12 28 58 折射定律 薄膜干涉 2019 12 28 59 2 半波损失 1 如两个表面反射都有半波损失 在光程差中不加 2 2 如两个表面反射都没有半波损失 在光程差中不加 2 3 如仅有一个表面反射有半波损失 在光程差中加 2 薄膜干涉 2019 12 28 60 薄膜干涉 3 干涉图样 注意 透射光和反射光干涉具有互补性 符合能量守恒定律 2019 12 28 61 两束相干光的光程差决定于 反射光的光程差 一般情况下薄膜干涉的分析比较复杂 通常只研究3个极端情形 膜的厚度e入射角i 4 几种特殊情况 2019 12 28 62 1 光垂直入射到均匀厚度的膜上 入射角i 0 反射光的光程差 加强 减弱 满足加强条件则反射光干涉加强 满足减弱条件则反射光干涉减弱 膜表面亮度均匀 不出现明暗相间的条纹 2019 12 28 63 例1一油轮漏出的油 折射率 1 2 污染了某海域 在海水 1 3 表面形成一层薄薄的油污 1 如果太阳正位于海域上空 一直升飞机的驾驶员从机上向下观察 他所正对的油层厚度为460nm 则他将观察到油层呈什么颜色 解 1 绿色 2019 12 28 64 2 如果一潜水员潜入该区域水下 又将看到油层呈什么颜色 解 透射光的光程差 红光 紫光 当时 透射光干涉极大 2019 12 28 65 例2增透膜 一些光学元件需要减少反射 增加透射 通常在玻璃的表面镀一层折射率比较小的氟化镁 使反射光干涉相消 反射光的光程差 为使波长 的单色光完全透过薄膜 则要求反射光干涉相消 膜的最小厚度为 2019 12 28 66 照相机镜头表面镀有增透膜 2019 12 28 67 例如在玻璃表面镀上一层MgF2薄膜 使波长为 550nm的绿光全部通过 求 膜的厚度 解 使反射绿光干涉相消 由反射光干涉相消条件 取k 0 99 6 nm 2019 12 28 68 在玻璃上交替镀上多层介质膜 增强反射光 称为高反射膜 例3高反膜 激光谐振腔中的反射镜要求对波长632 8nm的单色光有99 以上的 反射率 在玻璃表面交替镀上ZnS和MgF2 2019 12 28 69 2 只有入射角i变化的情况 等倾干涉 当薄膜的厚度均匀时 光程差只取决于入射光的角度 相同倾角的光线光程差相同 等倾干涉条纹 2019 12 28 70 薄膜 反射板 透镜 屏幕 2019 12 28 71 我们研究等厚干涉条纹 在本节讨论两个重要的等厚干涉 劈尖的干涉和牛顿环 当入射角固定时 对于波长一定的入射光 光程差只取决于薄膜的厚度 相同厚度的地方对应相同的光程差 出现同一级条纹 3 只有厚度e变化的情况 等厚干涉 2019 12 28 72 大学物理 14 4劈尖干涉 2019 12 28 73 光波经薄膜上下两表面反射后相互叠加所形成的干涉现象 称为薄膜干涉 回顾 薄膜干涉 当入射角保持不变时 光程差仅与膜的厚度有关 厚度相同的地方光程差相同 从而对应同一条干涉条纹 光程差 2019 12 28 74 一 劈尖膜 有两个表面很平的介质片 如玻璃片 一端相交 其间的夹角 很小 形成一个劈尖形的透明薄膜 称为劈尖膜 棱边 2019 12 28 75 二 实验装置 单色平行光垂直照射劈尖膜表面 在膜表面附近出现明暗相间的条纹 2019 12 28 76 在入射点膜厚为e 该点的两束反射光引起的光程差 光程差 2019 12 28 77 一系列明暗相间的 平行于棱边的平直条纹 第零级暗纹 三 条纹特征 1 明 暗条纹处的膜厚 2019 12 28 78 2 相邻明纹 或暗纹 对应的薄膜厚度之差 e ek 1 ek 2k 1 4n 2k 1 4n 2n 相邻明纹 或暗纹 对应的薄膜厚度之差相同 3 两相邻明纹 或暗纹 的间距 L e sin e 2n 结论a 条纹等间距分布 2019 12 28 79 结论b 转动 夹角 越小 条纹越疏 反之则密 如 过大 条纹将密集到难以分辨 L 2n 4 干涉条纹的移动 结论c 平移 相同的膜厚对应同一条条纹 2019 12 28 80 检验工件表面加工质量 四 劈尖干涉的应用 依据 劈尖干涉的特征 2019 12 28 81 测量微小长度 角度 四 劈尖干涉的应用 2019 12 28 82 测量膜厚度 四 劈尖干涉的应用 2019 12 28 83 解 2019 12 28 84 解 原相邻明纹间距 改变后的条纹间距 改变后的劈尖角 劈尖角的改变量 2019 12 28 85 内容回顾 薄膜干涉 等厚干涉 劈尖干涉 牛顿环 图样 与楞平行等间距明暗相间条纹 楞边是暗纹 2019 12 28 86 2 牛顿环 牛顿环由一块平板玻璃和一平凸透镜组成 中间形成空气薄膜 2 相干光的获得 1 实验装置及光路图 2019 12 28 87 3 光程差 4 条纹特点 条纹半径 明纹 暗纹 暗纹 牛顿环的干涉图样是以接触点为中心的一组明暗相间的同心圆环 2019 12 28 88 讨论 1 中心点处是一暗点 2 相邻两明纹或暗纹对应的厚度差 3 条纹间距 牛顿环条纹是内疏外密的同心园环 4 透射光干涉 在下表面附近产生干涉条纹 但条纹的明暗与反射光干涉结果相反 中心为一亮点 5 若将空气换成水 条纹变密 2019 12 28 89 讨论 6 若透镜上移 则明暗环向中心收缩 若透镜下移 则明暗环向外扩张 中心明暗交替变化 7 比较劈尖和牛顿环 相同点 垂直入射的等厚干涉条纹 二相邻条纹对应的厚度差 条纹间距 不同点 劈尖 直线 牛顿环 园环 等间距 内疏外密 2019 12 28 90 测量透镜的曲率半径 4 牛顿环的应用 测量未知入射单色光波长 用读数显微镜测量第k级和第k m级暗环半径rk rm 2019 12 28 91 检测光学镜头表面曲率是否合格 将玻璃验规盖于待测镜头上 两者间形成空气薄层 因而在验规的凹表面上出现牛顿环 当某处光圈偏离圆形时 则该处有不规则起伏 2019 12 28 92 例6用氦氖激光器发出的波长为633nm的单色光做牛顿环实验 测得第个k暗环的半径为5 63mm 第k 5暗环的半径为7 96mm 求平凸透镜的曲率半径R 解 2019 12 28 93 试定性画出牛顿环的花纹 例 解析 左半边有半波损失 右半边没有半波损失 左右两边花样明暗互补 左边 d 0处暗纹 右边 d 0处明纹 2019 12 28 94 14 6光的衍射现象惠更斯 菲涅耳原理 大学物理课程 2019 12 28 95 2019 12 28 96 所谓的佛光 2019 12 28 97 主要内容 光的衍射现象 衍射现象的分类 惠更斯 菲涅耳原理 2019 12 28 98 一 光的衍射现象 1 现象 衍射屏 观察屏 2 衍射 光在传播过程中绕过障碍物的边缘而偏离直线传播的现象 衍射现象是否明显取决于障碍物线度与波长的对比 波长越大 障碍物越小 衍射越明显 说明 光源 在光的衍射部分以夫琅禾费单缝衍射和衍射光栅为重点 2019 12 28 99 正三角形孔 正方形孔 正六边形孔 单缝 2019 12 28 100 圆盘衍射 手指缝的衍射 2019 12 28 101 二 衍射现象分类 1 菲涅耳衍射 菲涅耳衍射 光源和观察屏离衍射屏的距离有限远 菲涅耳衍射图形随屏到孔 缝 的距离而变 较复杂 近场衍射 2019 12 28 102 2 夫琅禾费衍射 夫琅禾费衍射 光源和观察屏都离衍射屏无限远 实验中可以下图实现 以下仅讨论夫琅禾费衍射 远场衍射 2019 12 28 103 本章讨论圆孔衍射和单缝衍射 圆孔衍射 单缝衍射 2019 12 28 104 三 惠更斯 菲涅耳原理 同一波前上的各点发出的都是相干次波 2 惠更斯 菲涅耳原理 各次波在空间某点的相干叠加 就决定了该点波的强度 1 惠更斯原理 波所到达的各点都可看作是一个新的波源 从这些波源又发出子波来 而下一时刻的波前就是这些子波的公切面 引入子波概念 菲涅尔补充 各子波在空间某点的相干叠加 就决定了该点波的强度 2019 12 28 105 说明 1 惠更斯 菲涅耳原理在惠更斯原理的基础上给出了次波源在传播过程中的振幅变化及位相关系 2 根据惠更斯 菲涅耳原理可确定波的传播方向 还可定量计算波所到达的各点的光强分布 光的干涉是有限的几列光波的叠加 而衍射是无数多个子波的叠加 在实际现象中 一般既有干涉的问题 又有衍射的问题 2019 12 28 106 ds波面在p点引起的光振动 K 倾斜因子 0 K Kmax K 90o K 0 它说明子波不会向后退 所以惠更斯 菲涅耳原理解释了为什么波不后传的问题 这是惠更斯原理无法解释的 C为比例常数 2019 12 28 107 p点的合振动 p点的光强 1882年以后 基尔霍夫解电磁波动方程 也得到了E p 的表示式 这使得惠更斯 菲涅耳原理有了波动理论的根据 菲涅耳衍射积分公式 2019 12 28 108 14 7单缝夫琅禾费衍射 大学物理课程 2019 12 28 109 1 衍射装置及花样 2019 12 28 110 由惠更斯 菲涅耳原理 单缝处波面看作无穷多个相干波源 屏上一点是 无穷 多光束干涉的结果 衍射角 2019 12 28 111 1823年当选为法国科学院院士 1825年被选为英国皇家学会会员 物理光学的缔造者 2 菲涅耳半波带法 2019 12 28 112 o A B 将衍射光束分成一组一组的平行光 每组平行光的衍射角相同 因为平行光经过透镜会聚后不会产生附加光程差 两边缘光线之间的光程差为 衍射角不同 最大光程差不同 P点位置不同 光强不同 屏上的光强分布取决于最大光程差 2 菲涅耳半波带法 2019 12 28 113 A B 用半波带来分析衍射图样的方法叫半波带法 C 并使相邻两纵长条带上对应两点所发出的光在P点的光程差为 这样的纵长条带称为半波带 将波阵面AB分成等宽的平行于狭缝的纵长条带 a 2 菲涅耳半波带法 2019 12 28 114 B A 2 2 a 当asin 时 可将缝分为两个半波带 相邻半波带的相对应点光程差均是 2 两个 半波带 发的光在P处干涉相消形成暗纹 2019 12 28 115 当asin 3 2时 可将缝分为3个半波带 相邻半波带的相对应点光程差均是 2 两个 半波带 发的光在P处干涉相消形成暗纹 第3个 半波带 发的光在P形成明纹 2019 12 28 116 一般情况下 可将缝分为m个半波带 当m为偶数时 p点为暗纹 当m为奇数时 p点为明纹 3 明暗纹条件 2019 12 28 117 4 条纹分析 1 明暗纹位置 2 条纹宽度 中央明纹宽度 中央明纹两侧第一级暗纹的间距 任一明纹宽度 相邻两暗纹的间距 中央明纹宽度是其它明纹宽度的2倍 2019 12 28 118 a一定 越大 1越大 衍射效应越明显 光直线传播 a增大 1减小 一定 衍射最大 2 缝宽变化对条纹的影响 1 波长变化对条纹的影响 第一暗纹的衍射角 a减小 1增大 讨论 2019 12 28 119 单缝宽度变化 中央明纹宽度如何变化 思考 2019 12 28 120 单缝宽度变化 中央明纹宽度如何变化 思考 2019 12 28 121 入射波长变化 衍射效应如何变化 2019 12 28 122 白光入射 2019 12 28 123 二 用振幅矢量推导光强公式 每个窄带发的子波在P点振幅近似相等 设为A1 相邻窄带所发子波在P点引起的振动的光程差 asin N 相位差 将缝AB的面积S等分成N 很大 个等宽的窄带 每个窄带宽度a N 1 振幅矢量法 2019 12 28 124 屏上P点的合振幅AP就是各子波的振幅矢量和的模 这是多个同方向 同频率 同振幅 初相依次差一个恒量的简谐振动的合成 对于屏中心o点 衍射角为零 各子波的相位相同 o点的合振动振幅A0 NA1 中央明纹的光强 2019 12 28 125 对于屏上其它点P 由于屏上位置不同 对应的衍射角就不同 的大小也不同 可以求出 过程略 p点的光强 令 2019 12 28 126 2 衍射条纹的特点 中央明纹 位置 在 0处 光强 中央明纹中心的光强最大I I0 2 暗纹 位置 在u 0 sinu 0处 条件 sin a 2 a 3 a 在sin 坐标上暗纹是等间距的 2019 12 28 127 3 其他明纹 位置 由求得 得tgu u 由作图法可得次极大位置 相应 2019 12 28 128 单缝衍射的 相对 光强曲线 2019 12 28 129 例1在单缝衍射中 600nm a 0 60mm f 60cm 则 1 中央明纹宽度为多少 2 两个第三级暗纹之间的距离 解 中央明纹的宽度 第三级暗纹在屏上的位置 两个第三级暗纹之间的距离 2019 12 28 130 例2在单缝衍射中 若使单缝和透镜分别稍向上移 则衍射条纹将如何变化 解 单缝上移 衍射光束向上平移 经透镜聚焦后 位置不变 条纹不变 透镜上移 衍射光束经透镜聚焦后 位置随之上移 条纹向上平移 2019 12 28 131 例3在单缝夫琅和费衍射实验中 缝宽a 10 缝后透镜焦距f 40cm 试求第一级明纹的角宽度 线宽度以及中央明纹的线宽度 所以第一级暗纹衍射角 第二级暗纹衍射角 2019 12 28 132 第一级明纹线宽度 中央明纹的线宽度 所以第一级明纹角宽度 2019 12 28 133 例4单缝衍射中 a 0 1mm 入射波长 500nm 透镜焦距f 10cm 在屏上x 1 75mm的p点为明条纹 求 1 点条纹级数 解 单缝衍射明纹的条件 第3级明纹 明纹在屏上的位置 2019 12 28 134 3 将缝宽增加1倍 点将变为什么条纹 第7级暗纹 2 对应于点缝可分成多少个半波带 7个半波带 2019 12 28 135 三 圆孔夫琅禾费衍射 光通过眼睛的瞳孔 望远镜 显微镜 照相机所成的像都是光波通过圆孔的衍射图样 平行光垂直通过圆孔时 在透镜的焦平面上形成明 暗交替的环形衍射图样 中心的圆斑称爱里斑 1 圆孔夫琅禾费衍射 2019 12 28 136 圆孔夫琅禾费衍射条纹照片 2019 12 28 137 爱里斑直径 爱里斑的光强度占整个入射光束总光强的84 理论计算表明 爱里斑对透镜中心的张角2 1与圆孔直径 入射波长的关系 爱里斑的大小称为半角宽度 用 1表示 2019 12 28 138 2 光学仪器的分辨率 几何光学 物点 波动光学 物点 像点 一一对应 像斑 一一对应 可分辨 刚可分辨 不可分辨 2019 12 28 139 当两个物点刚好被分辨时 它们对透镜中心的张角称最小分辨角或角分辨率 2019 12 28 140 例1设人眼在正常照度下的瞳孔直径约为3mm 而在可见光中 人眼最敏感的波长为550nm 问 1 人眼的最小分辨角有多大 2 神舟五号轨道最高点约300km 则两物点间距为多大时才能被分辨 解 1 2 2019 12 28 141 1990年发射的哈勃太空望远镜的凹面物镜的直径为2 4m 最小分辨 在大气层外615km高空绕地运行 可观察130亿光年远的太空深处 发现了500亿个星系 不可选择 可增大D提高分辨率 望远镜 2019 12 28 142 衍射与干涉 在物理本质上并无区别 仅由于处理相干光波叠加的方法不同 才分为干涉和衍射 通常把有限数目的分立相干光源的光波叠加称为干涉 叠加后发生能量在空间的重新分布 此时的能量 强度 分布图样叫做干涉图样 即把从不同狭缝射出的相干波的叠加 称为干涉 把连续分布的相干光源的光波叠加称为衍射 叠加后发生能量在空间的重新分布 此时的能量 强度 分布图样叫做衍射图样 即把从同一个狭缝射出的相干波的叠加 称为衍射 2019 12 28 143 14 8衍射光栅 大学物理课程 2019 12 28 144 光栅 反射光栅 透射光栅 透光宽度 不透光宽度 一 光栅常数 光栅宽度为l 每毫米缝数为m 则总缝数 大量等宽等间距的平行狭缝 或反射面 构成的光学元件 精密光学测量仪器 如光谱仪 的重要元件 2019 12 28 145 只考虑单缝衍射强度分布 双缝光栅强度分布 二 光栅衍射的基本特点 屏上的强度为单缝衍射和缝间干涉的共同结果 以二缝光栅为例 只考虑双缝干涉强度分布 结论 2019 12 28 146 为主极大级数 缝间干涉主极大条件 1 中央明纹 缝间干涉主极大就是光栅衍射主极大 其位置满足 光栅衍射主极大 光栅方程 三 条纹分析 缝间干涉加强条件 0 2 其它各级明纹 主极大 2019 12 28 147 透镜离狭缝距离很近 第k级明纹坐标为 相邻明纹间距为 光栅中狭缝越密集 光栅常数越小 则明纹间距越大 明纹就越亮 3 主极大位置 2019 12 28 148 4 以上明纹能否出现受两个条件限制 由此可确定k值 1 2 缺级 缝间干涉加强 明纹 单缝衍射相消 暗纹 多缝干涉主极大光强受单缝衍射光强调制 使得主极大光强大小不同 在单缝衍射光强极小处的主极大缺级 此时 公式中主极大明纹不再出现 称为缺级 2019 12 28 149 如 能看出缺哪些级次吗 d a是多少 2019 12 28 150 3 光栅常数越小 对应各级的衍射角越大 各级明条纹就分得越开 光栅的总缝数N越大 明条纹越亮 讨论 1 主极大条纹是由多缝干涉决定的 2 能观察到的主极大条纹的最大级数为 4 明纹的位置 光栅衍射中 衍射角一般较大 2019 12 28 151 5 暗条纹 在光栅衍射中 相邻两主极大之间还分布着一些暗条纹 这些暗条纹是由各缝射出的衍射光因干涉相消而形成的 N缝光栅 在相邻二主极大条纹之间有N 1条暗纹 2019 12 28 152 6 次明纹 在相邻暗条纹之间必定有明纹 称为次明纹或次极大 相邻主极大之间有 N 2 个次极大 次极大的亮度很小 实验中观察不到 当N很大时 次极大的个数很多 在主极大明条纹之间实际上形成一片相当暗的背底 在研究光栅问题时 主要研究主极大明纹 2019 12 28 153 四 光栅光谱 衍射光谱 1 光栅方程 对不同的入射波长 同一级明纹的位置不同 从而形成彩色光带 2 可以看到几级光谱 内紫外红 若用白光照射光栅 则各种波长的单色光将产生各自的衍射条纹 除中央明纹由各色光混合仍为白光外 其两侧的各级明纹都由紫到红对称排列着 这些彩色光带 叫做光栅光谱 当时 第k级和第k 1级的光谱将发生重叠 2019 12 28 154 0级 1级 2级 2级 1级 3级 3级 白光的光栅光谱 3 可以看到几级完整的光谱 2019 12 28 155 如测量未知合金的成分 可给该合金加高压 让灼热的合金发射出的光照射衍射光栅 得到其特征光谱 进行光谱分析即可得出未知合金的成分 光谱分析 由于不同元素 或化合物 各有自己特定的光谱 所以由谱线的成份 可以分析出发光物质所含的元素或化合物 还可以从谱线的强度定量分析出元素的含量 这种分析方法叫做光谱分析 2019 12 28 156 和 在光栅法线同侧时 相邻两缝的光程差 光栅公式 五 单色平行光斜入射情况 和 在光栅法线异侧时 相邻两缝的光程差 2019 12 28 157 例用白光垂直照射在每厘米中有6500条刻线的平面光栅上 求第三级光谱的张角 解 白光的波长范围 1 400nm 2 760nm 光栅常数 说明第三级红光不存在 即第三级谱线不能全部呈现在屏幕上 呈现在屏幕上部分张角为 2019 12 28 158 绿光 第三级能够出现的最大波长是多少 2019 12 28 159 1mm上500条刻痕的光栅 a 1 10 6m 590nm 垂直入射光栅 问 可以看到几级谱线 例 解 1 2 存在缺级 因此 实际看到的谱线有 三级光谱 5条主明纹 2019 12 28 160 600nm的单色光垂直入射到光栅上 第二级明纹出现在sin 0 2处 第四级缺级 求 1 光栅常数a b 2 缝宽a 3 可以看到几条明纹 例 解 1 2 为何不是2 3 因此 可以看到8级光谱 15条明纹 2019 12 28 161 例已知光栅狭缝宽为1 2 10 6m 当波长为500nm的单色光垂直入射在光栅上 发现第四级缺级 第二级和第三级明纹的间距为1cm 求 1 透镜的焦距f 2 计算屏幕上可以出现的明纹最高级数 解 2019 12 28 162 而第二级明纹在屏上的位置为 第三级明纹在屏上的位置 由光栅公式 对第二级明纹有 对第三级明纹有 由此可知 2019 12 28 163 查表知 由 2019 12 28 164 例以氢放电管发出的光垂直照射在某光栅上 在衍射角方向上看到和的谱线重合 求光栅常数的最小值 2019 12 28 165 14 10 12光的偏振 大学物理课程 2019 12 28 166 随着科学技术的发展 偏振光元件 偏振光仪器和偏振光技术在各个领域都得到了很多应用 尤其在实验应力分析 计量测试 晶体材料分析 簿膜和表面研究 激光技术等方面更为突出 使用偏振镜拍摄的水面 未使用偏振镜拍摄的水面 2019 12 28 167 机械波穿过狭缝 什么是偏振 横波有偏振性 纵波无偏振性 对纵波而言 包含传播方向与振动方向所构成的平面 哪一个都一样 没有一个显示出与另一个有什么区别或不同 称之为 波的振动方向对传播方向具有对称性 2019 12 28 168 光的振动方向在振动平面内不具有对称性 叫做光的偏振 对横波而言 由传播方向与振动方向所构成的平面 与包含传播方向而不包含振动方向的其它平面有区别 称之为 波的振动方向对传播方向不具有对称性 这种不对称性称之为偏振 机械波的横波与纵波的区别 偏振 光的波动性 光的干涉 衍射 光波是横波 光的偏振 2019 12 28 169 偏振光的五种偏振态 完全偏振光 1 自然光 5 部分偏振光 2 线偏振光3 圆偏振光4 椭圆偏振光 14 10自然光和偏振光 2019 12 28 170 一 自然光 普通光源发光具有随机性 间歇性 各原子发光彼此独立 互不相干 光振动方向的取向也是随机分布 矢量E在所有可能的方向上的振幅都相等 轴对称 这样的光叫自然光 a 自然光 2019 12 28 171 自然光的E矢量分解为两个互相垂直 振幅相等 相互独立的光振动 无确定的相位关系 表示 并各具有一半的振动能量 b 自然光的等效方法 c 自然光的图示 1 二互相垂直方向是任选的 2 各光矢量间无固定的相位关系 注意 2019 12 28 172 自然光经过某些物质的反射 折射或吸收后 可能只保留某一方向的光振动 这种只有某一固定方向振动的光叫做线偏振光或平面偏振光 完全偏振光 光振动平行屏幕 光振动垂直屏幕 振动面 二 线偏振光 2019 12 28 173 椭圆偏振光 在传播过程中 光矢量围绕传播方向按一定频率旋转 其末端在垂直于传播方向的平面上的投影是一椭圆 圆偏振光 光矢量末端在垂直于传播方向的平面上的投影是圆 右旋椭圆偏振光 三 圆偏振光和椭圆偏振光 2019 12 28 174 光矢量末点的运动轨迹是正椭圆 斜椭圆或圆 面对光的传播方向看 光矢量端点沿逆时针方向旋转的称为左旋偏振光 沿顺时针方向旋转的称为右旋偏振光 2019 12 28 175 垂直屏幕的光振动较强 平行屏幕的光振动较强 四 部分偏振光 某一方向的光振动比与之垂直方向上的光振动占优势的光为部分偏振光 部分偏振光的两个相互垂直的光振动也没有任何固定的相位关系 2019 12 28 176 如何获得偏振光 1 通过偏振片 2 光在二界面的反射和折射 3 双折射 2019 12 28 177 偏振片 Polaroid 当自然光射到偏振片上时 振动方向与偏振化方向平行的光透过 1928年一位19岁的美国大学生E H Land发明的 14 11偏振片的起偏和检偏马吕斯定律 2019 12 28 178 一偏振片的起偏与检偏 二向色性 某些物质能吸收某一方向的光振动 而只让与这个方向垂直的光振动通过 这种性质称二向色性 偏振片 涂有二向色性材料的透明薄片 偏振化方向 当自然光照射在偏振片上时 它只让某一特定方向的光通过 这个方向叫此偏振片的偏振化方向 偏振化方向 起偏器 偏振片的起偏作用 2019 12 28 179 偏振片 偏振片由具有二向色性的有机化合物的晶体构成 它能吸收入射光矢量在某一方向的分量 而透过其垂直分量 从而使入射的自然光变为线偏振光 出射的线偏振光的振动方向就是偏振片的透振方向 2019 12 28 180 用以转变自然光为偏振光的物体叫起偏器 用以判断某束光是否是偏振光的物体叫做检偏器 2019 12 28 181 思考 I不变 待检光是什么光 I变 有消光 待检光是什么光 I变 无消光 待检光是什么光 2019 12 28 182 二马吕斯定律 Maluslaw1880年 马吕斯定律 强度为I0的偏振光通过检偏振器后 出射光的强度为 2019 12 28 183 例1光强为I0的自然光垂直穿过两个偏振片 两偏振片的偏振化方向夹角为45 若不考虑偏振片的反射和吸收 则穿过两偏振片后的光强是多少 解 穿过P1后 I I0 2 穿过P2后 I Icos245 I0 4 2019 12 28 184 例2有两个偏振片 一个用作起偏器 一个用作检偏器 当它们偏振化方向间的夹角为时 一束单色自然光穿过它们 出射光强为 当它们偏振化方向间的夹角为时 另一束
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025中国中医科学院广安门医院招聘编内3人参考笔试题库及答案解析
- 技术总监面试题及团队管理策略含答案
- 2026云南红河州个旧市教体系统事业单位校园招聘24人备考考试题库及答案解析
- 2025福建锐捷网络股份有限公司招聘参考笔试题库及答案解析
- 2025四川南江公用事业发展集团有限公司招聘5人备考笔试题库及答案解析
- 2026年黑龙江八一农垦大学公开招聘博士研究生19人模拟笔试试题及答案解析
- 2025广西北海海关综合技术服务中心招聘非编人员5人(招满为止)备考笔试试题及答案解析
- 2025四川成都经济技术开发区(龙泉驿区)区属国有企业专业技术人员招聘18人参考笔试题库及答案解析
- 2026年家庭车载挂件回收服务合同
- 2026年高值医用耗材院内使用管理协议
- 洗煤厂租赁合同协议书
- 品管圈QCC成果汇报之降低用药错误发生率
- 汽车底盘故障诊断与排除课件 学习任务四 汽车行驶跑偏故障与排除
- 交管12123学法减分考试题库
- 大型活动策划策划方案
- 运营安全操作培训模板课件
- GB/T 18948-2025汽车冷却系统用橡胶软管和纯胶管规范
- 2025年无人机共享经济商业模式创新与实践案例报告
- 国际投资学的试题及答案
- 人教版(2024)八年级上册地理第一章 单元测试卷(含答案)
- 2025年注册安全工程师考试《安全生产事故案例分析》真题及答案
评论
0/150
提交评论