




免费预览已结束,剩余4页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
展开与折叠第二课时【教学目标】1.知识与技能 (1).了解棱柱、圆柱、圆锥的表面展开图的概念. (2).会在简单的情况下判断一个平面图形是不是几何体的表面展开图. 2.过程与方法通过数学活动经历和体验图形的变化过程,培养学生动手实践和解决问题能力及语言归纳能力,发展空间观念。3.情感态度和价值观 让学生主动探索,勇于发现,敢于表达,合作交流感受数学活动的生动魅力,激发学生学习数学的兴趣。 【教学重点】 通过数学活动认识棱柱、圆柱和圆锥的展开图,能感受到研究空间问题的思维方法。 【教学难点】 表面展开图的辨认【教学方法】 合作、探究【课前准备】 多媒体课件【教学过程】 一、复习导入 正方体的11种不同的展开图2、 探究新知1.棱柱的展开图将图中的棱柱沿某些棱剪开,展成一个平面图形,你能得到哪些形状的平面图形?三棱柱的展开图长方体的展开图 五棱柱的展开图1. 截面的概念有些立体图形展开平面图形;有些平面图形折叠立体图形。想一想:以下哪些图形经过折叠可以围成一个棱柱? (1) (2) (3) (4)图1:底面是四边形,侧面有3个,与三棱柱、四棱柱的特点 都不符合,所以不能围成棱柱。图2:符合棱柱的特点,能折成棱柱。图3:两个底面都在侧面的同侧,所以折叠后不能围成棱柱。图4:符合棱柱的特点,能折成棱柱。拓展:你能将图形(1)、(3)修改后使其能折叠成棱柱吗? 总结:一个平面图形能折叠成棱柱的关键:1.侧面的个数要与底面的边数相同;2.两个底面要位于侧面的两侧。练习:下列图形是什么多面体的展开图? 长方体 四棱锥 三棱柱2. 圆柱、圆锥的平面展开图把圆柱的侧面展开,会得到什么图形?圆柱的平面展开图把圆锥的侧面展开,会得到什么图形?圆锥的平面展开图最短线路问题:(1)a、b两点沿着侧面的最短线路是什么?(2)a与b两点沿着表面的最短路线是什么?3、 巩固练习:1. 下面几个图形是一些常见几何体的展开图,你能正确说出这些几何体的名字么? 2、 下列图形哪个不是长方体的表面展开图?( b )3 如图的展开图能折叠成的长方体是( d )4. 如图,下列展开图对应的几何体的名称依次是( b )a圆柱、六棱柱、圆锥、三棱柱 b圆柱、六棱柱、圆锥、三棱锥c圆锥、五棱柱、圆柱、三棱柱 d圆锥、六棱柱、圆柱、三棱锥5.如图,添加一个小正方形,使该图形经过折叠后能围成一个四棱柱,不同的添法共有( b )a7种 b4种 c3种 d2种 由四棱柱四个侧面和上下两个底面的特征可知,不同的添法共有4种,即在没有小正方形的一侧,每一个长方形的宽的左边添加都可以故选b 四、拓展提高 1.如图是一个多面体的展开图,每个面(外表面)内部都标注了字母,请你根据要求回答问题:(1)这个多面体是什么常见的几何体?(2)如果d是多面体的底部,那么哪一面在上面?(3)如果b在前面,c在左面,那么哪一面在上面?(4)如果e在右面,f在后面,那么哪一面在上面?解:(1)这个多面体是一个长方体; (2)面“b”与面“d”相对,如果d是多面体的底部,那么b在上面; (3)果b在前面,c在左面,那么a在下面, 面“a”与面“e”相对, e面会在上面; (4)由图可知,如果e在右面,f在后面,那么分两种情况:如果ef向前折,d在下,b在上;如果ef向后折,b在下,d在上2.如图是一张铁皮(1)计算该铁皮的面积;(2)它能否做成一个长方体盒子?若能,请画出它的几何图形,并计算它的体积;若不能,请说明理由解:(1)(31+12+32)2=112=22(平方米);(2)它能做成一个长方体盒子,如图长方体的体积为321=6(立方米)五、课堂小结 学会了简单几何体(如棱柱,圆柱、圆锥等)的平面展开图,知道按不同的方式展开会得到不同的展开图。六、作业布置 习题1.4:知识技能第1、2两题【板书设计】1.2 展开与折叠(2)棱柱的平面展开图棱柱的折叠圆柱、圆锥的平面展开图练习【教学反思】 本节课的教学活动,主要是让学生通过观察、动手操作,熟悉棱柱和圆柱、圆锥的展开图以及图形折叠后的形状。本节课的教学难点和重点是培养学生的空间想象力,而突破这一难点必须建立在学生动手操作、积极想象的基础上。所以教学时我通过演示包装盒的拆、合,使学生获取“平面展开图”的感性认识,为进一步自行探究立体图形的展开与折叠的实验活动提供了基础,同时,注重引导学生积极参与动手活动,努力想象平面图形与立体图形是如何转换的。在教学环节的设计上引导学生经历发现问题提出问题解决
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 绿色环保低碳建材产业园建设项目建筑工程方案
- 《离婚后财产分割与子女成长关怀综合合同》
- 农村地区租车合同终止及道路救援服务范本
- 5G移动数据服务保密及知识产权保护协议
- 离婚协议书样板:房产、股权等资产评估及分配方法
- 江苏省二手车买卖与二手车交易风险管理协议
- 民俗体育文化发展的困境与应对策略
- 2025年劳动游园考试试题及答案
- 低品位铁精粉提纯项目建筑工程方案
- 2025年韩语专业试题题库及答案
- 基础教育教学成果奖评审组织实施方案
- 建行考试题目及答案
- 医院拆除工程方案范本(3篇)
- Unit 1 第4课时 Section B 1a-2b 导学案-七年级英语上册
- 2026届上海市交通大学附属中学嘉定分校英语高三上期末联考模拟试题
- 第3课 团团圆圆过中秋 第1课时(课件)2025-2026学年道德与法治二年级上册统编版
- 小学二年级数学上册教材分析教学计划
- 第6课 从小爱科学 第1课时(课件)2025-2026学年道德与法治三年级上册统编版
- 2025年铁路建设工程质量安全监督管理人员考试试题及答案
- 2025年度事业单位公开招聘考试《综合应用能力(E类)药剂专业》新版真题卷(附解析)
- 成都麓湖生态城规划建筑产品线
评论
0/150
提交评论