




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
教学设计(教案)基本信息学 科数学年 级初二教学形式启发探究式教 师谢骏单 位潮州市高级实验学校课题名称12.2三角形全等的判定学情分析1、教学重点:(1)三角形全等的判定方法2:两边和它们的夹角分别相等的两个三角形全等。简称“边角边”或者“SAS”;(2)解题技巧:证明两条线段相等或两个角相等可以通过证明它们所在的两个三角形全等而得到;证明两个三角形全等时,有时利用等式的性质来证明两线段或两角相等;(3)尺规作图:已知两边及其夹角的三角形画另一与其全等的三角形。2、教学难点:探究三角形全等的条件。教学目标1、知识与技能:(1)掌握三角形全等的判定“边角边”即“SAS”定理及其应用;(2)能初步应用“边角边”即“SAS”定理判定两个三角形全等;(3)进一步掌握尺规作图的要领;(4)掌握一定的解题技巧,熟悉“数形结合”的思想;2、过程与方法:(1)是学生经历探索三角形全等条件的过程,体会如何探索研究问题,解决问题;(2)让学生初步体会分类思想,提高学生分析问题和解决问题的能力;3、情感、态度及价值观:(1)通过作图、比较、验证,培养学生注重观察、善于思考、不断总结的良好思维习惯;(2)通过边学边练和归纳总结,引导学生建立自己的知识体系及解题的逻辑思维。教学过程(一)温故知新:Teacher:我们前几节课学习了什么是全等三角形及其性质,并探讨得到了一个三角形全等的判定方法,那么在我们学习新知之前,我们一起来温习一下:【展示PPt】T:除了利用定义之外,我们还有学习哪一种方法只需三个条件就可以判定两个三角形全等呢?Students:三边分别相等的两个三角形全等!简称“边边边”或者“SSS”!T:那么我们还学习了如何用几何语言对其进行表述,如图:(二)新知探究:T:经过上一节课的探究,我们知道:一个或两个条件不能得出两个三角形全等。那么我们就在有三个条件时分情况进行了讨论探究,并用动手实践探究得到的事实得出“边边边”的三角形全等判定条件,那么接下来,我们要研究的是“当这三个条件里面有两边一角分别对应相等时,是否能推导出两个三角形全等”。【边讲解边展示PPt】T: 请同学们注意,此时这个角有没有强调是跟这两边有怎样的关系呢?请看上面给出的这个ABC,我们在这个三角形中找出的两边AB、AC及其夹角A是不是两边一角?那还有没有别的不同的方法也是两边一角呢?S:有!这里可以找ABC中的AB边和BC边及BC边所对的A!T:也就是说我们在找三角形中的两边一角时也需要我们进行分情况讨论(放慢语速让学生跟上思路),第一种情况是“两边和它们的夹角分别对应相等”,第二种是“两边及其一边的对角分别对应相等”,我们类比前面学习“边边边”判定方法的探究过程,同样地一起来进行实践操作,“用事实说话”!因此接下来请大家一起来看一下“探究3”,通过我们的作图探究一下第一种情况是否能得到两个三角形全等。【展示PPt】T:昨天我已经请大家先预习了“探究3”的作图步骤并进行实践,那么今天我们就一起来动手操作一下,请大家看看黑板上老师作图的每一个步骤,并思考我们这样所作出的两个三角形会不会全等呢?T:(边画边讲解,板书在黑板上第二版)首先,我们先画出一个任意的ABC(在黑板上画出任意的一个三角形,最好与已经准备好的三角形纸板大小一样);接下来,我们要画出一个A与A相等,此时就先要画一条射线取端点为A;再于ABC中,以点A为圆心,以小于AB、AC边的适当长度为半径画圆弧交AB边于点F,交AC边于点H;再以点A为圆心,AF为半径画圆弧交射线于点D;接着以点D为圆心,FH为半径画圆弧交另一圆弧于点E,那么此时我们就可以得到EAD=A。第二个步骤,即是在射线AD上截取AB=AB,在射线AE上截取AE=AC。最后连接BC。那么这里我们得到了两个三角形分别是ABC和ABC,通过平移,我们不难发现两者会重合,也就是说两个三角形全等!【展示PPt】T:那这里有我们的操作实践可以得到这样的一个事实,也就是我们今天所要学习的证明两个三角形全等的另一种证明方法:两边和它们的夹角分别相等的两个三角形全等(可以简写成“边角边”或“SAS”)。也就是说,三角形的两条边的长度和它们的夹角大小确定了,这个三角形的形状、大小也就确定了。请同学们在课本中第38页上面把这句判定的方法画起来,并齐读一遍,“两边”预备读!S:两边和它们的夹角分别相等的两个三角形全等(可以简写成“边角边”或“SAS”)。T:我们学习了这一种新的判定方法之后,就可以应用到我们的三角形全等的判定中去,那么就要学会如何运用数学中的几何语言进行表述,请大家一起看大屏幕。在这里特别要反复强调的是,对应顶点的字母要写在对应的位置上,三个条件在书写时也是按照“边角边”的顺序进行书写,接下来请大家运用刚才所学的“边角边”的三角形全等的判定方法,一起来做一下新课程第19页的练习第2题,找出图中共多少对全等三角形,分别是哪些?给大家一分钟时间完成,然后请同学回答。附题目:新课程P3822、下图中共有4对全等三角形,分别是和,和,和,和。S:图中共有4对全等三角形,分别是和,和,和,和。T:经过探究,我们知道:两边和它们的夹角分别相等的两个三角形全等。简称“SAS”。那么“两边一角”的另外一种情况我们同样也需要分析一下,这样才能全面地探究“两边一角是否能得到两个三角形全等”。【展示PPt】那么“两边一角”的另外一种情况我们同样也需要分析一下,这样才能全面地探究“两边一角是否能得到两个三角形全等”。接下来请同学们来思考一下:两边及其一边的对角分别相等的两个三角形全等吗?【展示PPt】看到动画的演示,我们知道虽然在ABC和ABD中,有两边一角对应相等,但是从图示来分析很明显可以知道这两个三角形不全等!那么此时我们可以得到结论:两边及其一边所对的角相等,两个三角形不一定全等。在课本第39页最上面“思考”部分下来的这段话的最后一句请同学们划起来并齐读。接下来请大家现学现卖,做一下这道判断题:附题目:判断题:两边及一角分别相等的两个三角形全等()(三)例题讲解:T:我们现在已经学习了利用“两边和它们的夹角分别相等两个三角形全等”来判定两个三角形是否全等,那么就一起来看一下这样的一道例题,看看在实际中如何应用我们的数学知识。【展示PPt】请大家先阅读一下题目,找出我们可以抽象出来的几何图形,分析已知的条件有哪些,要求证明什么,等等。这里我们可以知道我们由题意可以抽象出两个三角形分别是ACB和DCE,已知的条件是:CA=CD,1=2,CB=CE,此时已经满足了我们要证明两个三角形全等的“边角边”的条件,也就可以得到ACDCE,再根据我们最开始所学习的三角形全等的性质,对应边相等推导出AB=DE,量出的DE的长度就是A、B的距离。由例2这道实际应用题目我们可以总结归一下:当我们要证明线段相等或者角相等时,可以通过证明它们是全等三角形的对应边或对应角来解决。这便是我们以后解题的一种技巧,在我们课本第38页最下面倒数第二行末尾的“所以证明。”开始,请同学们划起来。(四)学以致用T:学习了判定方法与解题技巧,我们就用两道简单的练习来检验一下我们所学的成果,请同学拿出课堂练习本,做课本第39页练习的第1和第2题,待会儿我要请同学上来黑板上板书给大家做示范,请认真完成。附题目:课本P391、21、如图,两车从南北方向的路段AB的一端A出发,分别向东,向西行进相同的距离,到达C、D两地,此时C、D到B的距离相等吗?为什么?解:此时C、D到B的距离相等,理由如下:依题意得:BACD,AD=ACBAAC1=2=90在BAD和BAC中AB=AB1=2AD=ACBADBAC(SAS)DB=CB2、如图,点E,F在BC上,BE=CF,AB=DC,B=C,求证A=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 演出经纪人之《演出经纪实务》试卷及参考答案详解ab卷
- 教师招聘之《小学教师招聘》强化训练高能附答案详解(满分必刷)
- 2025内蒙古呼伦贝尔林业集团有限公司招聘工作人员5人考试备考及答案详解(必刷)
- 押题宝典教师招聘之《幼儿教师招聘》通关考试题库附参考答案详解【黄金题型】
- 2025年教师招聘之《幼儿教师招聘》能力检测试卷及参考答案详解(满分必刷)
- 教师招聘之《小学教师招聘》考前冲刺训练试卷【夺分金卷】附答案详解
- 2025年教师招聘之《幼儿教师招聘》模拟试题含答案详解(研优卷)
- 2025年教师招聘之《小学教师招聘》试题一附参考答案详解(研优卷)
- 教师招聘之《小学教师招聘》能力提升试题打印及完整答案详解1套
- 教师招聘之《幼儿教师招聘》考试综合练习及参考答案详解【夺分金卷】
- powerbi考试题及答案
- GB/T 26925-2025节水型企业火力发电行业
- 红字发票折让协议书
- 2025届安徽省六校研究会高三开学联考-物理试卷(含答案)
- 《社会工作》课件
- 《AIGC应用实战:写作、绘图、视频制作、直播》课件 第七章 即梦的使用方法
- LY/T 1607-2024造林作业设计规程
- 中国工程总承包行业市场深度调研及发展趋势与投资前景研究报告2025-2028版
- 2025-2030中国核导弹和炸弹行业市场发展趋势与前景展望战略研究报告
- 老年髋部骨折围术期护理临床实践专家共识2024版解读
- 煤矿应急预案v
评论
0/150
提交评论