



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.2 一元二次方程的解法(第2课时)课堂笔记1. 一般地,对于形如x2=a(a0)的方程,根据平方根的定义,可得x1=,x2=-. 这种解一元二次方程的方法叫做开平方法.2. 把一元二次方程的左边配成一个完全平方式,右边为一个非负常数,然后用开平方法求解,这种解一元二次方程的方法叫做配方法.课时训练a组 基础训练1. 方程(x-3)2=16的解是( ) a. x1=x2=3 b. x1=-1,x2=7 c. x1=1,x2=-7 d. x1=-1,x2=-72. 方程(x-1)2=2的根是( c ) a. -1,3 b. 1,-3 c. 1-,1+ d. -1,+13. 如果x=-3是一元二次方程ax2=c的一个根,那么该方程的另一个根是( ) a. 3 b. -3 c. 0 d. 14. 下列解方程的结果正确的是( ) a. x2=-11,解得x= b. (x-1)2=4,解得x-1=2,所以x=3 c. x2=7,解得x= d. 25x2=1,解得25x=1,所以x=5. 方程x2+6x-5=0的左边配成完全平方后所得方程为( ) a. (x+3)2=14 b. (x-3)2=14 c. (x+6)2= d. (x+3)2=46. 将下列各式配方:(1)x2-4x+( )=(x- )2;(2)x2+12x+( )=(x+ )2;(3)x2-x+( )=(x- )2;(4)x2+2x+( )=(x+ )2.7. 方程3(x-1)2=6的解为 .8 已知x2-4x+4+y2+6y+9=0,则x-y的值为 .9. 王涛利用电脑设计了一个程序:当输入实数对(x,y)时,会得到一个新的实数x2+y-1,例如输入(2,5)时,就会得到实数8(即22+5-1=8). 若输入实数对(m,2)时得到实数3,则m= .10. 关于x的方程(x+h)2+k=0(h,k均为常数)的解是x1=-3,x2=2,则方程(x+h-3)2+k=0的解是 .11. 用开平方法解下列方程:(1)9x2-16=0;(2)-(x-1)2=-3.12. 用配方法解方程:(1)x2-4x-5=0;(2)-x2+3x-2=0;(3)x22x+4.b组 自主提高13 求证:代数式x2-5x+7=0的最小值为.14. 已知三个连续奇数的平方和是251,那么这三个数的积是多少?15. 已知等腰三角形的底边长为8,腰长是方程x29x200的一个根,求这个三角形的面积参考答案2.2 一元二次方程的解法(第2课时)【课时训练】15. bcaca6. (1)4 2 (2)36 6 (3) (4)2 7. x=18. 59. 【点拨】根据题意,得m2+2-1=3,即m2=2. 解得m=.10. x1=0,x2=511. (1)移项,得9x2=16. 方程两边同除以9,得x2=. 解得x1=,x2=-.(2)将原方程整理,得(x-1)2=.两边开平方,得x-1=.移项,得x=1.即原方程的解为x1=,x2=.12. (1)x1=5,x2=-1 (2)x1=1,x2=2(3)x=13. x2-5x+7=(x-)2,最小值为.14. 设中间的数为x,则另外两个数分别为x-2和x+2. 根据题意,得(x-2)2+x2+(x+2)2=251. 整理,得x2=81. x=9. 当x=9时,x(x-2)(x+2)=693;当x=-9时,x(x-2)(x+2)=-693.【点拨】设中间一个数为x,则另外两个数为x-2和x+2,根据题意可得关于x的一元二次方程,解方程即可.15. 由x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学前班安全知识培训课件
- 2025年校企合作中职业教育特色专业建设案例报告
- 学会漱口课件分步骤做
- 9 《从百草园到三味书屋》 鲁迅 教学课件 初中语文统编版(2024)七年级上册 第三单元
- 个人养老金制度在2025年对金融市场投资机会识别与投资策略报告
- 2025年肥料行业当前发展趋势与投资机遇洞察报告
- 2025年教育信息化行业当前市场规模及未来五到十年发展趋势报告
- 2025年汽车精细化学品行业当前发展趋势与投资机遇洞察报告
- 2025年卷材涂料行业当前发展趋势与投资机遇洞察报告
- 季节性安全知识培训总结课件
- 电梯维保服务售后服务方案
- 副反应量表(TESS)评分
- 院内质量管理进修汇报
- 创新型物理实验室设计思路
- (完整版)基于PLC的三层电梯控制系统毕业设计论文
- 养老机构服务管理记录规范DB50-T 1421-2023
- 过程流程图-控制计划-PFMEA培训
- 儿童保健培训
- 医疗质量管理制度汇编
- 自然的箫声张宏堡 自然的箫声
- 项目管理水电站项目基本情况
评论
0/150
提交评论