湖北省宜昌市高中数学 第二章 随机变量及其分布 2.3.1 离散型随机变量的均值学案(无答案)新人教A版选修23.doc_第1页
湖北省宜昌市高中数学 第二章 随机变量及其分布 2.3.1 离散型随机变量的均值学案(无答案)新人教A版选修23.doc_第2页
湖北省宜昌市高中数学 第二章 随机变量及其分布 2.3.1 离散型随机变量的均值学案(无答案)新人教A版选修23.doc_第3页
湖北省宜昌市高中数学 第二章 随机变量及其分布 2.3.1 离散型随机变量的均值学案(无答案)新人教A版选修23.doc_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

231离散型随机变量的均值知识与技能:了解离散型随机变量的均值或期望的意义,会根据离散型随机变量的分布列求出均值或期望教学重点:离散型随机变量的均值或期望的概念一、复习引入:1.随机变量:2. 离散型随机变量: 3连续型随机变量: 4.离散型随机变量与连续型随机变量的区别与联系: 5. 分布列: 6. 分布列的两个性质: pi0,i1,2,; p1+p2+=1 7.离散型随机变量的二项分布: 8. 离散型随机变量的几何分布:二、讲解新课:根据已知随机变量的分布列,我们可以方便的得出随机变量的某些制定的概率,但分布列的用途远不止于此,例如:已知某射手射击所得环数的分布列如下45678910p0.020.040.060.090.280.290.22预计n次射击的平均环数约为对于任一射手,若已知其射击所得环数的分布列,即已知各个(i=0,1,2,10),我们可以同样预计他任意n次射击的平均环数:1. 均值或数学期望: 一般地,若离散型随机变量的概率分布为x1x2xnpp1p2pn则称 为的均值或数学期望,简称期望2. 均值或数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平 3. 平均数、均值:一般地,在有限取值离散型随机变量的概率分布中,令,则有,所以的数学期望又称为平均数、均值 4. 均值或期望的一个性质:若(a、b是常数),是随机变量,则也是随机变量,它们的分布列为x1x2xnpp1p2pn于是 ) ,由此,我们得到了期望的一个性质:5.若b(n,p),则e=np 证明:三、讲解范例:例1. 篮球运动员在比赛中每次罚球命中得1分,罚不中得0分,已知他命中的概率为0.7,求他罚球一次得分的期望解:例2. 一次单元测验由20个选择题构成,每个选择题有4个选项,其中有且仅有一个选项是正确答案,每题选择正确答案得5分,不作出选择或选错不得分,满分100分 学生甲选对任一题的概率为0.9,学生乙则在测验中对每题都从4个选择中随机地选择一个,求学生甲和乙在这次英语单元测验中的成绩的期望 解:例3. 根据气象预报,某地区近期有小洪水的概率为0.25,有大洪水的概率为0. 01该地区某工地上有一台大型设备,遇到大洪水时要损失60 000元,遇到小洪水时要损失10000元为保护设备,有以下3 种方案:方案1:运走设备,搬运费为3 800 元 方案2:建保护围墙,建设费为2 000 元但围墙只能防小洪水方案3:不采取措施,希望不发生洪水试比较哪一种方案好解:例4.随机抛掷一枚骰子,求所得骰子点数的期望解:例5.有一批数量很大的产品,其次品率是15%,对这批产品进行抽查,每次抽取1件,如果抽出次品,则抽查终止,否则继续抽查,直到抽出次品为止,但抽查次数不超过10次求抽查次数的期望(结果保留三个有效数字)解:例6.随机的抛掷一个骰子,求所得骰子的点数的数学期望解:例7.某城市出租汽车的起步价为10元,行驶路程不超出4km时租车费为10元,若行驶路程超出4km,则按每超出lkm加收2元计费(超出不足lkm的部分按lkm计)从这个城市的民航机场到某宾馆的路程为15km某司机经常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm路程计费),这个司机一次接送旅客的行车路程是一个随机变量设他所收租车费为()求租车费关于行车路程的关系式;()若随机变量的分布列为15161718p0.10.50.30.1求所收租车费的数学期望()已知某旅客实付租车费38元,而出租汽车实际行驶了15km,问出租车在途中因故停车累计最多几分钟?解:当堂训练:1. 口袋中有5只球,编号为1,2,3,4,5,从中任取3球,以表示取出球的最大号码,则( )a4;b5;c4.5;d4.752. 篮球运动员

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论