2019年初中几何知识点总结.doc_第1页
2019年初中几何知识点总结.doc_第2页
2019年初中几何知识点总结.doc_第3页
2019年初中几何知识点总结.doc_第4页
2019年初中几何知识点总结.doc_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2019年初中几何知识点总结 初中几何是高中几何的基础,我们应该要掌握好关键的知识点。以下是为大家精心整理的初中几何知识点总结,欢迎大家阅读。 1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。 2、三角形的分类 3、三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。 4、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。 5、中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。 6、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。 7、高线、中线、角平分线的意义和做法 8、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。 9、三角形内角和定理:三角形三个内角的和等于180 推论1直角三角形的两个锐角互余 推论2三角形的一个外角等于和它不相邻的两个内角和 推论3三角形的一个外角大于任何一个和它不相邻的内角;三角形的内角和是外角和的一半 10、三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。 11、三角形外角的性质 (1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线; (2)三角形的一个外角等于与它不相邻的两个内角和; (3)三角形的一个外角大于与它不相邻的任一内角; (4)三角形的外角和是360。 四边形(含多边形)知识点、概念总结 一、平行四边形的定义、性质及判定 1、两组对边平行的四边形是平行四边形。 2、性质: (1)平行四边形的对边相等且平行 (2)平行四边形的对角相等,邻角互补 (3)平行四边形的对角线互相平分 3、判定: (1)两组对边分别平行的四边形是平行四边形 (2)两组对边分别相等的四边形是平行四边形 (3)一组对边平行且相等的四边形是平行四边形 (4)两组对角分别相等的四边形是平行四边形 (5)对角线互相平分的四边形是平行四边形 4、对称性:平行四边形是中心对称图形 二、矩形的定义、性质及判定 1、定义:有一个角是直角的平行四边形叫做矩形 2、性质:矩形的四个角都是直角,矩形的对角线相等 3、判定: (1)有一个角是直角的平行四边形叫做矩形 (2)有三个角是直角的四边形是矩形 (3)两条对角线相等的平行四边形是矩形 4、对称性:矩形是轴对称图形也是中心对称图形。 三、菱形的定义、性质及判定 1、定义:有一组邻边相等的平行四边形叫做菱形 (1)菱形的四条边都相等 (2)菱形的对角线互相垂直,并且每一条对角线平分一组对角 (3)菱形被两条对角线分成四个全等的直角三角形 (4)菱形的面积等于两条对角线长的积的一半 2、s菱=争6(n、6分别为对角线长) 3、判定: (1)有一组邻边相等的平行四边形叫做菱形 (2)四条边都相等的四边形是菱形 (3)对角线互相垂直的平行四边形是菱形 4、对称性:菱形是轴对称图形也是中心对称图形 四、正方形定义、性质及判定 1、定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形 2、性质: (1)正方形四个角都是直角,四条边都相等 (2)正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 (3)正方形的一条对角线把正方形分成两个全等的等腰直角三角形 (4)正方形的对角线与边的夹角是45 (5)正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形 3、判定: (1)先判定一个四边形是矩形,再判定出有一组邻边相等 (2)先判定一个四边形是菱形,再判定出有一个角是直角 4、对称性:正方形是轴对称图形也是中心对称图形 五、梯形的定义、等腰梯形的性质及判定 1、定义:一组对边平行,另一组对边不平行的四边形是梯形。两腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形 2、等腰梯形的性质:等腰梯形的两腰相等;同一底上的两个角相等;两条对角线相等 3、等腰梯形的判定:两腰相等的梯形是等腰梯形;同一底上的两个角相等的梯形是等腰梯形;两条对角线相等的梯形是等腰梯形 4、对称性:等腰梯形是轴对称图形 六、三角形的中位线平行于三角形的第三边并等于第三边的一半;梯形的中位线平行于梯形的两底并等

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论