卧式超声珩磨机床设计【10张CAD图纸、说明书】【GC系列】
收藏
资源目录
压缩包内文档预览:
编号:37722528
类型:共享资源
大小:1.63MB
格式:ZIP
上传时间:2020-01-07
上传人:好资料QQ****51605
认证信息
个人认证
孙**(实名认证)
江苏
IP属地:江苏
50
积分
- 关 键 词:
-
10张CAD图纸、说明书
GC系列
卧式
超声
机床
设计
10
CAD
图纸
说明书
GC
系列
- 资源描述:
-
【温馨提示】====【1】设计包含CAD图纸 和 DOC文档,均可以在线预览,所见即所得,,dwg后缀的文件为CAD图,超高清,可编辑,无任何水印,,充值下载得到【资源目录】里展示的所有文件======【2】若题目上备注三维,则表示文件里包含三维源文件,由于三维组成零件数量较多,为保证预览的简洁性,店家将三维文件夹进行了打包。三维预览图,均为店主电脑打开软件进行截图的,保证能够打开,下载后解压即可。======【3】特价促销,,拼团购买,,均有不同程度的打折优惠,,详情可咨询QQ:1304139763 或者 414951605======【4】 题目最后的备注【GC系列】为店主整理分类的代号,与课题内容无关,请忽视
- 内容简介:
-
ELSEVIER Journal of Materials Processing Technology 62 (1996) 403-407 Journal of Materials Processing Technology Effect of grinding parameters on acoustic emission signals while grinding ceramics Javad Akbari, Yoshio Saitob, Tadaaki a n a o k a , Shizuichi i u c h i , and Shinzo EnomotoC Faculty of Mechanical Engineering, Sharif University of Technology, P.O. Box 11365-9567 Tehran, Iran baculty of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263, Japan GINTIC Institute of Manufacturing Technology, Nanyang Technological University, Singapore Abstract Grinding process of engineering ceramics is always accompanied by cracking. For automation of machining process it is necessary that a reliable sensing system be devised to detect the workpiece cracking during grinding. In this paper an acoustic emission (AE) sensor was examined for in-process detection of workpiece conditions. Different grinding conditions were performed for evaluation of sensitivity of AE and understanding the effect of each grinding parameter.on AE activities during grinding process of alumina ceramics. The results of experiments indicate that AE activities increase with increasing wheel depth of cut and table speed, however when the wheel speed increases, AE activities decrease. As a result, it is shown that AE is basically a function of abrasive grain depth of cut which is in turn, the main factor for determining the surface integrity of fine ceramics. Keywords: Grinding, Acoustic Emission, Ceramics, Machining Damage, Grinding Mode 1. Introduction Under certain controlled conditions it is now possible to grind brittle materials such as engineering ceram- ics so that material is removed by plastic flow, leaving crack-free surfaces I. Such a damage-free grinding occurs when the volume of materials stressed by each grit of the grinding wheel is small enough to yield rather than exhibit brittle frac- ture, i.e. cracking. In practice, this means maintaining the grain depth of cut (undeformed chip thickness) to below the ductile-brittle transition value. In order to reduce the machining times and costs ex- tremely, automatic machines and systems are applied. For automation of ductile-mode grinding of fine ceram- ics the machine tool must be equipped with sensors of enough sensitivity to ceramic part cracking. Acoustic emission technology has a long history in studies relating to materials research, material evalu- ation, nondestructive testing and manufacturing pro- cesses. Using AE for inspection of machining process was intensified during the last decade. Wakada and Inasaki 2, for instance, used AE sensor to monitor chatter vibrations and wear of a CBN grinding wheel. Some workers such as Eda, et al. 3, Bifano and Yi 4 and Akbari, et al. 5 have used AE for monitoring the machining process of brittle materials. The results of our previous experiments 6, 7 1 indicate that AE is sen- sitive enough to detect surface damage of fine ceramics. It was also shown during grinding of fine ceramics that AE activities increase when the abrasive grain depth of cut, g , increases 8. The objective of present article is to evaluate the sen- sitivity of AE to different grinding parameters such as wheel depth of cut, table speed and wheel speed. In this way the main factor which controls the AE activities in ceramic materials during grinding is determined. In order to solve the problem of noises which is the most important precondition for using acoustic emis- sion signal analysis, different strategies are introduced. 2. Experimental procedure Experiments were carried out on a horizontal spindle surface grinder with variable wheel speed, table speed, and down feed control. Table 1 shows the grinding con- 0924-0136/96/$15,00 1996 Elsevier Science S.A. All rights reserved PU 0924-0136(96)02443-0 404 J. Akbari et al.Nourna1 of Materials Processing Technology 62 (1996) 403407 Table 1 Grinding conditions and mechanical properties of workpiece Grinding conditions Workpiece properties (WT% 99.7 Alz03) Grinding method One-pass, up- and wet surface grinding Bending strength 374 Mpam1j2 Grinding wheel ASD200R.l00B, (NORTON) Hardness 1590 HVlO Truer Rotary type DD-205, (FSK) Fracture toughness 4.5 M a m Dresser GC dressing stick, 360H, (FSK) Wheel speed, V , m/min 700, 900, 1100, 1300, 1500, 1700 Table speed, v , m/rnin 0.06, 0.12, 0.18, 3, 6, 9 Depth of cut, t , p m 2.5, 5, 10, 15, 20, 25 Fig. 1. Experimental setup for grinding tests ditions and mechanical property of the normal sintered A1203 which served as test material. The AE measurement apparatus and data process- ing system which is schematically shown in Figure 1 was used. Acoustic emission signal was detected us- ing a piezoelectric transducer of 140 kHz resonance fre- quency which was attached to the opposite side of the grinding surface below the workpiece using a wax-type couplant. The detected signal then was passed through a low-noise preamplifier with 40 dB gain and the main amplifier to total gain of 60 dB. There are different sources of noise during grinding process. To determine the characteristics of each noise, the noise was gener- ated separately or combined with other noises, then it was recorded and analyzed. The noises from grinding wheel and grinding fluid were the most serious noises. For filtering the noises, different filtering strategies were used in order to diminish the noise effect. Most of the noises generated by peripheral sources such as machine Fig. 2. Schematic of typical AE signal vibration and wheel rotation were easily omitted us- ing high-pass filters with cut-off frequency of 200 kHz. Just before starting to record AE, the grinding fluid was stopped to avoid the high level fluid noise. This method was successful because the noise level decreased consid- erably and the workpiece and the wheel were enough wet for the short period of engagement. Each experi- ment was repeated 3 times. The data analysis software let us to select the AE events within two predefined limits of amplitude, dura- tion, rise time or oscillations. Figure 2 introduces some expressions of AE which are used in this work. Discriminating level was set at 0.8-1.7 volts, depend- ing on the background noise level; however, for data processing, an amplitude window of 2-5.1 volts was used. The data processing time window was 5 seconds for the data of all experiments. After the grinding pro- cess, grinding mode and surface damage were studied by SEhl micrography. 3. Results and discussion For analysis of acoustic emission signals different methods based on waveform power spectrum (FFT) and AE event counting wt:re examined. As explained in previous works 6, 71, for quantitative comparison J. Akbari et al./Journal of Materials Processing Technology 62 (1996) 403407 405 I I ii x High amplitude 0 Long duration High oscillation I 2% I 10 20 30 Depth of cut, t, pm Fig. 3. Percentage of events of high amplitude, long duration, and high oscillation vs. wheel depth of cut. between the results of distribution plots such as ampli- tude distribution, duration distribution and oscillation distribution during each grinding experiment, it is suit- able to choose a limit line on the graph and make a basis on the number of events on each side of this limit for evaluation as higher or lower. The limit line is preferably determined using the experience for transi- tion from ductile to brittle mode. Using this method, the percentage of events more or less than the thresh- old, give a unique value which can be plotted on a graph by one point. In grinding experiments, the threshold was decided 3 V for amplitude distribution, 20 psec for duration distribution and 20 cycle/event for oscillation distribution. Thus, the values more than these limits were called high amplitude, long duration and high os- cillation. Figure 3 indicates that the percentage of events of high amplitude, long duration and high oscillation increase with increasing the wheel depth of cut, t. Generally, the results of previous studies showed that these parameters increase when the surface cracking and chipping increase. The increasing rate of high am- plitude events at smaller depth of cut are more, but decreasing with increasing the depth. This may occur because of sinking the diamond abrasive grains into the resinoid bond of the wheel which is a controlling factor for the grain depth of cut. It is interesting to compare this results with the re- sults of grinding of Sic ceramic (Fig. 4) I. These data were obtained for quantitative evaluation of the finished surface of the ceramic workpiece, using the area per- centage of fracture surface, Sf. For this purpose, an . Rmax - - - x 1 3. -*- x- -x % 5 10 15 Wheel depth of cut, t, pm Fig. 4. Effects of actual wheel depth of cut on percent- age of surface fracture and surface roughness of Sic. ll image analyzing instrupent was used on a secondary electron image of a 2000 times magnified SEM photo- graph (The average of 10 times measurements was used as Sf for each sample). The percentage of surface frac- tures and surface roughness of ceramics increase with increasing wheel depth of cut. In this case also it is possible to suggest a threshold for transition from ductile to brittle mode. Moreover, the results of previous works especially in scratching tests 6 confirm that with decreasing depth of cut, we will have a condition of ductile mode material removal. Thus AE can be used in place of microscopic obser- vation for in-process monitoring of grinding mode of ceramics. Similarly, the percentage of high-amplitude, long- duration and high-oscillation AE events can be plotted against table speed, v, (Fig. 5) and peripheral wheel speed, V, (Fig. 6). From Fig. 5 it can be seen that these AE parame- ters are much sensitive to table speed when grinding is performing in creep feed mode, while in normal speed grinding this sensitivity decreases. In Fig. 6, however, all of the percentages decrease with increasing the wheel speed. Investigation reports that increasing the table speed or decreasing the wheel speed would increase the surface fracture and machining damages of ceramic ma- terials I. Based on these facts, Fig. 5 and Fig. 6 indicate that increasing damages are accompanied by events of longer life, higher amplitude and more os- cillations. This fact was also confirmed previously in scratching tests. 406 J. Akbari et al./Journal of Materials Processing Technology 62 (1996) 403407 Fig. 5. Percentage of events of high amplitude, long Fig. 6. Percentage of events of high amplitude, long duration and high oscillation vs. table speed. duration and high oscillation vs. wheel speed 4. Effect of the coefficient of grain depth of cut on AE High amplitude v = 0.18 m/min High oscillation 70- The effects of grinding parameters on AE activities indicate that AE signals can be characterized by an- other basic parameter which is the coefficient of grain depth of cut, q 5 , ( Eq. 1 ). 4 , in Eq. 1 is a dimension- less value derived from grinding conditions. This factor which mainly controls the mode of grinding process, can be expressed by following equation: , . t = 5 p m _ -*- -* - - - - - - % - - - - - % - - - - - % - - . - + - -_E_o I _ - _ I _ 1. The percentage of events of high amplitude, long duration and more oscillation which indicate sur- face cracking increase with increasing depth of cut and table speed but decrease as the wheel speed increases. AE parameters also show good correlation with the coefficient of grain depth of cut, 4 , . When 4 , is kept constant, the AE activities dont change at different grinding contlitions. Confirming the relationship between AE and dg will let us to use AE for monitoring the grinding mode of fine ceramics. J. Akbari et al./Journal of Materials Processing Technology 62 (1996) 403-407 407 * High amplitude 0 Long duration I High oscillation 0 0 4 8 12 x lo4 Coef. of grain depth of cut, $g 600 1000 1400 1800 Wheel speed, V, m/min 80- Fig. 7. Percentage of events of high amplitude, long du- Fig. 8. Percentage of AE parameters at constant coef- ration and high oscillation vs. coefficient of grain depth ficient of grain depth of cut of cut. 4, = 6 X I O - * High amplitude t = 5 p m ( Long duration Table speed, v, is shown in m/min High oscillation - References I Y. Ichida, K. Kishi,Y. Hasuda and J. Akbari, Study on Mirror Finish Grinding of Fine Ceramics (1st. Report) -Fundamental Consideration on Mechanism of Surface Generation, Int. J. Japan Soc. for Pre- cis. Eng., 1991, Vol. 57, No. 8, pp. 1406-1412. In Japanese 2 M. Wakada and I. Inasaki, Detection of Malfunction in Grinding, 4th World Meeting on Acoustic Emis- sion (AEWG-35) and 1st Int. Conf. on Acoustic Emission in Manufacturing, Boston, Mass, USA, Sep. 16-19, 1991, Pub. by American Soc. of Nonde- structive Testing. 3 H. Eda, K. Kishi, H. Ueno, N. Matsuoka and J. Ak- bari, In-process Detection of Grinding Cracks of Fine Ceramics Using Acoustic Emission Energy, Proc. Spring Conf. of Japan Soc. for Precis. Eng., Japan, 1989, p. 1117.In Japanese Enomoto, Acoustic Emission Characteristics in Mul- tipoint Scratching of Fine Ceramics, Proc. 7th Int. Conf. on Produc./Precis. Eng., 4th Int. Conf. on High Tech., Chiba, Japan, Sep. 15-17, 1994, pp. 362-367. 6 J. Akbari, Y. Saito, T. Hanaoka and S. Enomoto, De- tection of Cutting Mode During Scratching of Ceram- ics Using Acoustic Emission, Int. J. Japan Soc. for Precis. Eng., 1993, Vol. 27, No. 1, pp. 35-40. 7 J. Akbari, Y. Saito, T. Hanaoka and S. Enomoto, LAcosti Emission and Deformation Mode in Caam- ics During Indentation, JSME Int. J., Series A, 1994, Vol. 37, No. 4, pp. 488-494. 8 J. Akbari, Y. Saito, T. Hanaoka and S. Enomoto, Us- ing Acoustic Emission for Monitoring of Grinding Pro- cess of Fine Ceramics -, Sensitivity of AE to Grain Depth of Cut - JSME Int. J., Series C, 1995, Vol. 38, 4 T.G. Bifano and Y. Yi, Acoustic Emission as an In- No. 1, pp. 175-180. -. dicator of Material-Removal Regime in Glass Micro- Machining, J. Precis. Eng., 1992, Vol. 14, No. 4, pp. 9 J. Akbari, Y. Ichida, I. Kishi and T. Machida, Grind- 219-228. ing Energy of Fine Ceramics,Proc. First Int. Conf. on New Manufacturing Tech., Makuhari, Chiba, Japan, 5 J. Akbari, Y. Saito, T. Hanaoka, S. Higuchi and S. 1990, p. 323-329. 毕业实习报告学院:机械与动力工程学院专业班级:机制03-3班 姓名:王宏亮 2007年5月15日目 录前 言第一章 焦作神华重型机械制造有限公司第一节:公司简介第二节:齿轮加工工艺第二章 河南焦作矿山机器有限公司第一节:公司简介第二节:阶梯轴加工工艺过程分析第三章 焦作市制动器有限公司第一节:公司简介第二节:凸轮的数控铣削工艺分析及程序编制第四章 中轴集团公司简介第一节:公司简介第二节:凸轮轴加工工艺结束语前 言 在焦老师的带领下,我们共进行了为期一周的实习参观,可以说我们在这次实习中学到了很多在课堂没学到的知识,受益匪浅:1.实习目的:此次实习是我们机制专业知识结构中不可缺少的组成部分,并作为一个独立的项目列入专业教学计划中的。其目的在于通过实习使学生获得基本生产的感性知识,理论联系实际,扩大知识面;同时专业实习又是锻炼和培养学生业务能力及素质的重要渠道,培养当代大学生具有吃苦耐劳的精神,也是学生接触社会、了解产业状况、了解国情的一个重要途径,逐步实现由学生到社会的转变,培养我们初步担任技术工作的能力、初步了解企业管理的基本方法和技能;体验企业工作的内容和方法。这些实际知识,对我们学习后面的课程乃至以后的工作,都是十分必要的基础。2.实习内容:掌握机械加工工艺方面的知识及方法; 了解切削刀具方面的知识,熟悉常用刀具的结构、选择、用途等; 了解机床和数控系统的知识,特别是加工中心等典型的数控设备; 了解企业生产管理模式,学习先进的管理方式方法; 熟悉、巩固铸造工艺及设备方面的知识;第一章 焦作神华重型机械制造有限公司第一节:公司简介焦作神华重型机械制造有限公司(原焦作重型机械制造有限责任公司)是集科技开发、生产经营、技术服务于一体,具有百年历史的国家二级企业,国家二级计量单位,省级文明单位,中国煤矿机械装备公司及河南省煤矿机械制造公司成员厂。公司现有职工二千多人,其中各类专业技术人员300余人,中、高级专业技术职称人员50余人。拥有固定资产5000万元,年产值7000万元,各种机加工设备300台(套),其中5m立车、5m滚齿机、大型数显落地镗铣床等精良设备50台(套)。公司技术力量雄厚,下设机械加工、铆焊、铸造、热处理、检测及安装等分厂,有先进的理化实验、计量检测、产品检测、信息中心等。本公司面向煤矿、建材、化工、冶金、电力、环保等行业,可承揽年产120万吨煤炭设备、30万吨水泥成套设备、15万千瓦电煤磨设备及20万吨纯碱成套设备、0.630万千瓦燃煤电厂环保设备制造及安装,产品远销全国二十六个省、市、自治区,曾多次为国家重点工程配套。2000年12月获得中国方圆认证委员会质量认证中心ISO9001国际质量体系认证。我们的质量方针是:满足顾客的需要是我们永恒的追求。质量目标是:质量体系按ISO9001标准保持稳定有效运行,产品一次交验合格率95%。以高质量、低成本、优质服务、达到顾客满意为宗旨。本公司面向煤矿、建材、化工、冶金、电力、环保等行业。多次为国家重点工程配套带式输送机,在用户中享有较高声誉。第二节:齿轮加工工艺一个齿轮的加工过程是由若干工序组成的。为了获得符合精度要求的齿轮,整个加工过程都是围绕着齿形加工工序服务的。齿形加工方法很多,按加工中有无切削,可分为无切削加工和有切削加工两大类。 无切削加工包括热轧齿轮、冷轧齿轮、精锻、粉末冶金等新工艺。无切削加工具有生产率高,材料消耗少、成本低等一系列的优点,目前已推广使用。但因其加工精度较低,工艺不够稳定,特别是生产批量小时难以采用,这些缺点限制了它的使用。齿形的有切削加工,具有良好的加工精度,目前仍是齿形的主要加工方法。按其加工原理可分为成形法和展成法两种。成形法的特点是所用刀具的切削刃形状与被切齿轮轮槽的形状相同,如图9-3所示。用成形原理加工齿形的方法有:用齿轮铣刀在铣床上铣齿、用成形砂轮磨齿、用齿轮拉刀拉齿等方法。这些方法由于存在分度误差及刀具的安装误差,所以加工精度较低,一般只能加工出910级精度的齿轮。此外,加工过程中需作多次不连续分齿,生产率也很低。因此,主要用于单件小批量生产和修配工作中加工精度不高的齿轮。 展成法是应用齿轮啮合的原理来进行加工的,用这种方法加工出来的齿形轮廓是刀具切削刃运动轨迹的包络线。齿数不同的齿轮,只要模数和齿形角相同,都可以用同一把刀具来加工。用展成原理加工齿形的方法有:滚齿、插齿、剃齿、珩齿和磨齿等方法。其中剃齿、珩齿和磨齿属于齿形的精加工方法。展成法的加工精度和生产率都较高,刀具通用性好,所以在生产中应用十分广泛。滚齿是齿形加工方法中生产率较高、应用最广的一种加工方法。在滚齿机上用齿轮滚刀加工齿轮的原理,相当于一对螺旋齿轮作无侧隙强制性的啮合,见图9-24所示。滚齿加工的通用性较好,既可加工圆柱齿轮,又能加工蜗轮;既可加工渐开线齿形,又可加工圆弧、摆线等齿形;既可加工大模数齿轮,大直径齿轮。滚齿可直接加工89级精度齿轮,也可用作7 级以上齿轮的粗加工及半精加工。滚齿可以获得较高的运动精度,但因滚齿时齿面是由滚刀的刀齿包络而成,参加切削的刀齿数有限,因而齿面的表面粗糙度较粗。为了提高滚齿的加工精度和齿面质量,宜将粗精滚齿分开。第二章河南焦作矿山机器有限公司第一节:公司简介河南焦矿机器有限公司前身为焦作矿山机器股份有限公司,工厂始创于1949年。2005年9月,职工共同出次,买断国有净资产,完成了企业改制。 公司下设11个生产分厂,有各类加工设备600余台,其中大型、精密、稀有设备110多台,从铸、锻、铆、焊到加工、装配,形成完善的工艺手段和产品质量控制体系,已通过ISO9001质量体系认证,是一个具有相当规模和实力的重型机械制造企业。河南省中小矿山机械产品质量监督检验测试中心站设在该公司。公司产品以破碎、粉磨设备为主导,主要有:年产30万吨及以上的水泥成套设备;用于火力发电机组的系列煤磨机;各种颚式、锤式、贺锥式破碎机;冶金用氧化球团设备;全套选矿设备;高低压电控制装置;电除尘、水污染处理环保设备等。公司还将着力于洁净煤生产设备、风力发电设备和大型精密铸造件的市场拓展,以满足更多不同行业的需求。第二节:阶梯轴加工工艺过程分析 图 635 为减速箱传动轴工作图样。表 612 为该轴加工工艺过程。生产批量为小批生产。材料为 45 热轧圆钢。零件需调质。 (一)结构及技术条件分析 该轴为没有中心通孔的多阶梯轴。根据该零件工作图,其轴颈 M 、 N ,外圆 P,Q 及轴肩 G 、 H 、 I 有较高的尺寸精度和形状位置精度,并有较小的表面粗糙度值,该轴有调质热处理要求。 (二)加工工艺过程分析 1 确定主要表面加工方法和加工方案。 传动轴大多是回转表面,主要是采用车削和外圆磨削。由于该轴主要表面 M,N,P,Q 的公差等级较高( IT6 ),表面粗糙度值较小( Ra0.8 m ),最终加工应采用磨削。其加工方案可参考表 3-14 。 2 划分加工阶段 该轴加工划分为三个加工阶段,即粗车(粗车外圆、钻中心孔),半精车(半精车各处外圆、台肩和修研中心孔等),粗精磨各处外圆。各加工阶段大致以热处理为界。 3 选择定位基准 轴类零件的定位基面,最常用的是两中心孔。因为轴类零件各外圆表面、螺纹表面的同轴度及端面对轴线的垂直度是相互位置精度的主要项目,而这些表面的设计基准一般都是轴的中心线,采用两中心孔定位就能符合基准重合原则。而且由于多数工序都采用中心孔作为定位基面,能最大限度地加工出多个外圆和端面,这也符合基准统一原则。 但下列情况不能用两中心孔作为定位基面: ( 1 )粗加工外圆时,为提高工件刚度,则采用轴外圆表面为定位基面,或以外圆和中心孔同作定位基面,即一夹一顶。 ( 2 )当轴为通孔零件时,在加工过程中,作为定位基面的中心孔因钻出通孔而消失。为了在通孔加工后还能用中心孔作为定位基面,工艺上常采用三种方法。 当中心通孔直径较小时,可直接在孔口倒出宽度不大于 2 mm 的 60 o 内锥面来代替中心孔; 当轴有圆柱孔时,可采用图 6 36 a 所示的锥堵,取 1 500 锥度;当轴孔锥度较小时,取锥堵锥度与工件两端定位孔锥度相同;当轴通孔的锥度较大时,可采用带锥堵的心轴,简称锥堵心轴,如图 6 36 b 所示。 使用锥堵或锥堵心轴时应注意,一般中途不得更换或拆卸,直到精加工完各处加工面,不再使 用中心孔时方能拆卸。 4 热处理工序的安排 该轴需进行调质处理。它应放在粗加工后,半精加工前进行。如采用锻件毛坯,必须首先安排退火或正火处理。该轴毛坯为热轧钢,可不必进行正火处理。 5 加工顺序安排 除了应遵循加工顺序安排的一般原则,如先粗后精、先主后次等,还应注意: ( 1 )外圆表面加工顺序应为,先加工大直径外圆 ,然后再加工小直径外圆,以免一开始就降低了工件的刚度。 ( 2 )轴上的花键、键槽等表面的加工应在外圆精车或粗磨之后,精磨外圆之前。 轴上矩形花键的加工,通常采用铣削和磨削加工,产量大时常用花键滚刀在花键铣床上加工。以外径定心的花键轴,通常只磨削外径键侧,而内径铣出后不必进行磨削,但如经过淬火而使花键扭曲变形过大时,也要对侧面进行磨削加工。以内径定心的花键,其内径和键侧均需进行磨削加工。 ( 3 )轴上的螺纹一般有较高的精度,如安排在局部淬火之前进行加工,则淬火后产生的变形会影响螺纹的精度。因此螺纹加工宜安排在工件局部淬火之后进行。第三章:焦作市制动器有限公司第一节:公司简介 公司是集欧美、亚太及非洲地区的失效保护盘式制动器、电力液压块式制动器、电磁铁制动器、推动器、起重电器研究、开发、设计、制造、销售、服务于一体的现代化专业公司。是中国重型机械工业协会桥式起重机分会、中国重型机械工业协会传动部件分会、中国工程机械工业协会建筑起重机机械分会、中国风能协会、中国农业机械工业协会风力机械分会会员单位。 公司占地面积18000平方米,建筑面积5800平方米,固定资产850余万元,教授、中高级工程师、专业技术人员48人,高层管理人员26人,各种生产检测设备120多台,3条制动器生产流水线,具有年产各类制动器、推动器6万余台的生产能力。公司于2003年又一次全面通过了ISO9001质量管理体系认证。“与时俱进,开拓创新”。公司始终瞄准国际先进制动器的发展趋势,始终跟踪各类主机的发展动态,引领和嫁接当代先进制造技术,不断改进生产工艺,提高产品性能,不断开发具有国际先进水平的新产品,以满足用户各类新主机技术发展和改造的需要。 “一份耕耘,一份收获”。该公司产品取得国家起重机械质量监督检验中心颁发的“特种设备型式试验合格证书”;并相继获得了“全国质量稳定合格产品证书”、“中华人民共和国进出口企业资格证书”、“河南省重合同守信用企业”、“焦作市重合同守信用企业”、“焦作市重点保护企业”等20多项殊荣;5项产品获国家级、省级科技进步奖。第二节:凸轮的数控铣削工艺分析及程序编制 1工艺分析 从图上要求看出,凸轮曲线分别由几段圆弧组成,30孔为设计基准,其余表面包括4-13H7孔均已加工。故取30孔和一个端面作为主要定位面,在联接孔13的一个孔内增加削边销,在端面上用螺母垫圈压紧。因为 孔是设计和定位的基准,所以对刀点选在孔中心线与端面的交点上,这样很容易确定刀具中心与零件的相对位置。 图1 平面凸轮2加工调整 加工坐标系在X和Y方向上的位置设在工作台中间,在G53坐标系中取X-400,Y-100。Z坐标可以按刀具长度和夹具、零件高度决定,如选用20的立铣刀,零件上端面为Z向坐标零点,该点在G53坐标系中的位置为Z-80处,将上述三个数值设置到G54加工坐标系中。加工工序卡如表1所示。 表1 数控加工工序卡 3数学处理 该凸轮加工的轮廓均为圆弧组成,因而只要计算出基点坐标,就可编制程序。在加工坐标系中,各点的坐标计算如下: BC弧的中心O1点:X-(175638)sin859-3728 Y-(175638)cos859-23586 EF弧的中心O2点:X2Y2692 联立 (X-64)2Y2212 解之得 X6575,Y2093 HI弧的中心O4点:X-(17561)cos2415-215.18 Y(17561)sin 24159693 DE弧的中心O5点:X2Y26372 联立 (X-6575)2(Y-2093)221302 解之得 X6370,Y-027 B点: X-638sin859-996 Y-638cos859-6302 C点: X2Y2642 联立 (X3728)2(Y23586)21752 解之得 X-557,Y-6376 D点: (X-6370)2(Y027)2032 联立 X2Y2642 解之得 X6399,Y-028 E点: (X-637)2(Y027)2032 联立 (X-6575)2(Y-2093)2212 解之得 X6372,Y003 F点: (X107)2(Y-16)2462 联立 (X-6575)2(Y-2093)2212 解之得 X4479,Y1960 G点: (X107)2(Y-16)2462 联立 X2Y2612 解之得 X1479,Y5918 H点: X-61cos2415-5562 Y61sin 24152505 I点: X2Y263802 联立 (X21518)2(Y-9693)21752 解之得 X-6302,Y997 根据上面的数值计算,可画出凸轮加工走刀路线图。如表2所示。 表2 数控加工走刀路线图 4编写加工程序 凸轮加工的程序及程序说明如下: N10 G54 X0 Y0 Z40 /进入加工坐标系 N20 G90 G00 G17 X-738 Y20 /由起刀点到加工开始点 N30 G00 Z0 /下刀至零件上表面 N40 G01 Z-16 F200 /下刀至零件下表面以下1mm N50 G42 G01 X-638Y10 F80 H01 /开始刀具半径补偿 N60 G01 X-638 Y0 /切入零件至A点 N70 G03 X-996 Y-6302 R638 /切削AB N80 G02 X-557 Y-6376 R175 /切削BC N90 G03 X6399 Y-028 R64 /切削CD N100 G03 X6372 Y003 R03 /切削DE N110 G02 X4479 Y196 R21 /切削EF N120 G03 X1479 Y5918 R46 /切削FG N130 G03 X-5526 Y2505 R61 /切削GH N140 G02 X-6302 Y997 R175 /切削HI N150 G03 X-6380 Y0 R638 /切削IA N160 G01 X-6380 Y-10 /切削零件 N170 G01 G40 X-738 Y-20 /取消刀具补偿 N180 G00 Z40 /Z向抬刀 N190 G00 X0 Y0 M02 /返回加工坐标系原点,结束 参数设置:H0110; G54:X-400,Y-100,Z-80。第四章 中轴集团公司简介第一节:公司简介中轴集团公司的核心企业中原轴件厂原本是一个小厂,后来由于大胆采用了节能节材的生产工艺,在市场竞争中赢得了主动,产品供不应求,急需扩大生产规模。当时原焦作市标准件厂北厂有20多亩厂区和2000平方米的厂房因生产不景气在闲置。1994年初,中原轴件厂对其实施了吸收式合并,迅速在其现成的厂房内建起了一条大型生产线,这样既保证了接收过来的原标准件厂职工有活干,也使企业的生产规模和经济实力迅速壮大。 中轴集团公司从1998年开始划小核算单位,将原来的生产车间转化为模拟经营实体的专业厂,让专业厂直接面对市场,对市场信息作出快速灵敏的反应。经过一段时间的探索,中轴集团公司决定由公司纪检和工会出面,对本单位的财务、工资分配、招待费、通信费、劳保用品发放等每月审查一次,然后签名认可。一个专业厂的厂长克扣工人工资4000多元情况被查证落实后,公司对这名厂长及时作出了免除厂长职务、开除留用的处分。其旗下的焦作中轴森特凸轮轴有限公司是专业研制和生产高档发动机凸轮轴的企业,注册资本2700万元,现有职工280人,其中高中级技术人员63人。公司引进德国CBN双磨头高线速数控凸轮型面磨削工艺和主轴径磨削工艺,采用美国凸轮轴检测仪及国产先进的数控凸轮轴加工设备,工艺装备水平国内一流。企业年产高档汽车发动机凸轮轴30万根,主要与广西玉柴、山东潍柴、一汽大柴、江苏锡柴等国内知名汽车发动机厂家配套河南中轴集团有限公司是轴类产品的生产基地,依靠H750、H1000、H1200系列楔横轧机,能轧制四缸、六缸、八缸等直径小于120MM,长度小于1200MM的多种钢制凸轮轴毛坯。引进的德国、美国等国际最先进的凸轮轴磨削加工及检测设备,能同时满足不同用户对凸轮轴毛坯、半成品、成品的各种需求。目前该公司凸轮轴同国内几大知名柴油机主机厂家直接配套,供货信誉良好。第二节:凸轮轴加工工艺目前,大部分发动机制造企业都采用整体式凸轮轴,其材料有的采用中碳低合金锻钢(经高频淬火),有的采用球墨铸铁。整体式凸轮轴加工工艺包括粗加工、半精加工和精加工。生产中采用自动线多工位机床,设备投资较大,生产线占地面积多,生产成本较高。而装配式凸轮轴只需半精加工和精加工,凸轮、齿轮、轴套可采用不同的材料,因此产品质量可减轻30-50;可柔性化生产,设备投资小,生产线占地面积少,生产成本较低。 1 装配式凸轮轴工艺流程 装配式凸轮轴工艺流程为校直加工两端面中心孔、螺纹孔、驱动孔(2台加工中心并行加工)车轴颈、齿轮毛坯、前止端面及导向轮毂磨轴颈及导向轮毂滚齿压销磨凸轮(3台磨床并行加工)凸轮淬火去毛刺校直轴颈凸轮轴颈及凸轮抛光清洗综合检测。 装配式凸轮轴内凸轮、轴套、偏心环、齿轮等零部件先后联成完整凸轮轴。装配过程是人工将所有凸轮轴组装。部件包括凸轮、主轴颈、齿坯放到安装上料盒中,钢管穿到各部件孔中,在安装上料盒中进行初定位。启动设备后,该上料盒进入设备中,首先用工装测头进行部件到位检测,并验证凸轮放置位置是否正确。验证通过后,使用机械手将凸轮轴上料到凸轮轴压球工位,然后各部件定位块启动以精确定位凸轮、轴颈、齿轮。到位后同时夹紧各部件,并伸出顶杆将直径超过管子内径的钢球穿过整个钢管内径,钢管外的凸轮轴部件在受到钢管膨胀伸展作用力下和钢管相互弹性变形最终形成装配式凸轮轴,这种凸轮轴组合工艺称为管内滚压扩张法。 2 凸轮轴装配工艺方法 21 热套法 常温下,外部零件的孔和内部钢管的外径之间有过盈,装配之前先对外部零件(凸轮、轴套)进行加热,对内部钢管进行冷却,借以消除过盈。这种工艺方法在短暂时间内完成联接过程,在轴向尺寸和角度位置方面都有很高精度。 22 内部高压成形法(IHU) 已经淬硬的凸轮圈与利用内部的高压力,使钢管变形形成轴向联接。通过在凸轮旁将钢管材料往外压出110 mm左右而达到凸轮的轴向定位。这种IHU工艺制成的装配式凸轮轴已成功应用在奥迪公司2003年投入批量生产的V6TDI轿车柴油机中。IHU装配式凸轮轴是由壁厚为25 mm或30 mm精密钢管上安装等温淬火的凸轮和钢管堵头组成。 整个周长上等壁厚的凸轮被置入一台专门的设备中,这台设备可保证轴向对准凸轮中心线和凸轮转角位置。钢管穿过如此定位好的凸轮推入,一台真空抓取机将预先定位好的各个零件放到带IHU工具的
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。