




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
基本初等函数的导数公式及导数的运算法则(1)【教学目标】1能根据定义求函数yc,yx,yx2,y,y的导数 2能利用给出的基本初等函数的导数公式求简单函数的导数。【教法指导】本节学习重点:能利用给出的基本初等函数的导数公式求简单函数的导数本节学习难点:能根据定义求函数yc,yx,yx2,y,y的导数【教学过程】复习引入 在前面,我们利用导数的定义能求出函数在某一点处的导数,那么能不能利用导数的定义求出比较简单的函数及基本函数的导数呢?这就是本节要研究的问题探索新知探究点一几个常用函数的导数思考1怎样利用定义求函数yf(x)的导数?答(1)计算,并化简;(2)观察当x趋近于0时,趋近于哪个定值;(3)趋近于的定值就是函数yf(x)的导数思考2利用定义求下列常用函数的导数:yc,yx,yx2,y,y.答y0,y1,y2x,y (其它类同),y.思考3导数的几何意义是曲线在某点处的切线的斜率物理意义是运动物体在某一时刻的瞬时速度(1)函数yf(x)c(常数)的导数的物理意义是什么?(2)函数yf(x)x的导数的物理意义呢?思考4在同一平面直角坐标系中,画出函数y2x,y3x,y4x的图象,并根据导数定义,求它们的导数(1)从图象上看,它们的导数分别表示什么?(2)这三个函数中,哪一个增加得最快?哪一个增加得最慢?(3)函数ykx(k0)增(减)的快慢与什么有关?答函数y2x,y3x,y4x的图象如图所示,导数分别为y2,y3,y4.(1)从图象上看,函数y2x,y3x,y4x的导数分别表示这三条直线的斜率(2)在这三个函数中,y4x增加得最快,y2x增加得最慢(3)函数ykx(k0)增加的快慢与k有关系,即与函数的导数有关系,k越大,函数增加得越快,k越小,函数增加得越慢函数ykx(k0)减少的快慢与|k|有关系,即与函数导数的绝对值有关系,|k|越大,函数减少得越快,|k|越小,函数减少得越慢思考5画出函数y的图象根据图象,描述它的变化情况,并求出曲线在点(1,1)处的切线方程答函数y的图象如图所示,结合函数图象及其导数y发现,当x0时,随着x的增加,函数减少得越来越慢点(1,1)处切线的斜率就是导数y|x11,故斜率为1,过点(1,1)的切线方程为yx2.思考6利用导数的定义可以求函数的导函数,但运算比较繁杂,有些函数式子在中学阶段无法变形,怎样解决这个问题?答可以使用给出的导数公式进行求导,简化运算过程,降低运算难度 探究点二基本初等函数的导数公式思考你能发现8个基本初等函数的导数公式之间的联系吗?答公式6是公式5的特例,公式8是公式7的特例例1求下列函数的导数:(1)ysin;(2)y5x;(3)y;(4)y;(5)ylog3x.解(1)y0;(2)y(5x)5xln 5;(3)y(x3)3x4;(4)y()(x)x;(5)y(log3x).反思与感悟对于教材中出现的8个基本初等函数的导数公式,要想在解题过程中应用自如,必须做到以下两点:一是正确理解,如sin是常数,而常数的导数一定为零,就不会出现cos这样的错误结果二是准确记忆,灵活变形如根式、分式可转化为指数式,利用公式2求导跟踪训练1求下列函数的导数:(1)yx8;(2)y()x;(3)yx;(4)ylogx.例2判断下列计算是否正确求ycos x在x处的导数,过程如下:y|xsin .解错误应为ysin x,y|xsin .反思与感悟函数f(x)在点x0处的导数等于f(x)在点xx0处的函数值在求函数在某点处的导数时可以先利用导数公式求出导函数,再将x0代入导函数求解,不能先代入后求导跟踪训练2求函数f(x)ln x在x1处的导数解f(x)(ln x),f(1)1,函数f(x)在x1处的导数为1.探究点三导数公式的综合应用按照基本初等函数的导数公式,我们可以解决两类问题:(1)可求基本初等函数图象在某一点p(x0,y0)处的切线方程(2)知切线斜率可求切点坐标例3已知直线l: 2xy40与抛物线yx2相交于a、b两点,o是坐标原点,试求与直线l平行的抛物线的切线方程,并在弧aob上求一点p,使abp的面积最大反思与感悟利用基本初等函数的求导公式,可求其图象在某一点p(x0,y0)处的切线方程,可以解决一些与距离、面积相关的几何的最值问题,一般都与函数图象的切线有关解题时可先利用图象分析取最值时的位置情况,再利用导数的几何意义准确计算跟踪训练3点p是曲线yex上任意一点,求点p到直线yx的最小距离解根据题意设平行于直线yx的直线与曲线yex相切于点(x0,y0),该切点即为与yx距离最近的点,如图则在点(x0,y0)处的切线斜率为1,即y|xx01.y(ex)ex,ex01,得x00,代入yex,得y01,即p(0,1)利用点到直线的距离公式得距离为.课堂提高1下列结论中正确的个数为()yln 2,则y;y,则y|x3;y2x,则y2xln 2;ylog2x,则y.a0 b1 c2 d3【答案】d2过曲线y上一点p的切线的斜率为4,则点p的坐标为()a. b.或c. d.【答案】b【解析】y4,x,故选b.3设正弦曲线ysin x上一点p,以点p为切点的切线为直线l,则直线l的倾斜角的范围是()a0,) b0,)c, d0,【答案】a【解析】(sin x)cos x,klcos x,1kl1,l0,)4设函数f(x)在(0,)内可导,且f(ex)xex,则f(1)_.【答案】2【解析】设ext,则xln t(t0),f(t)ln ttf(t)1,f(1)2. 5求下列函数的导数:(1)yx;(2)yx7;(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年保安员考试模考模拟试题附答案详解(典型题)
- 六年级英语上册 Module 8 Unit 2 I often go swimming说课稿2 外研版(三起)
- Unit1 Lesson 4 My school days (说课稿)-冀教版(2024)初中英语七年级上册
- 2024秋五年级英语上册 Module 5 Unit 1 There are only nineteen crayons第2课时说课稿 外研版(三起)
- 2024-2025学年新教材高中数学 第3章 排列、组合与二项式定理 3.1 排列与组合 3.1.2 第1课时 排列与排列数说课稿 新人教B版选择性必修第二册
- 人教版八年级上册第二单元《第4课 书间精灵-藏书票》说课稿
- 浙教版科学七下4.2 地球的自转 上课说课稿
- 小学语文识字教学策略与试题解析
- 2025 学校食堂肉类食品购销合同
- 2025年健身教练职业技能考核试卷:健身教练健身行业健身行业市场营销试题
- 给排水管类取样送检指南
- 真空包装机作业指导书
- 质子泵抑制剂临床使用管理办法
- 2023年上海16区高考一模英语听力合集附音频含答案含原文
- 中医医院处方笺模板
- GB/T 4170-2006塑料注射模零件技术条件
- GB/T 12363-2021锻件功能分类
- 水调歌头-公开课教学设计 省赛一等奖
- 《番茄工作法图解》课件
- 报价单模板及范文(通用十二篇)
- 蒂森克虏伯电梯MC2-C调试介绍
评论
0/150
提交评论