



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.1 向量的概念及表示课堂导学三点剖析1.向量、相等向量、共线向量的概念【例1】 判断下列各命题的真假.(1)向量的长度与向量的长度相等;(2)向量a与向量b平行,且a与b方向相同或相反;(3)两个有共同起点而且相等的向量,终点相同;(4)两个有共同终点的向量,一定是共线向量;(5)与共线,则点a、b、c、d必在同一条直线上;(6)有向线段就是向量,向量就是有向线段.思路分析:考查向量的基本概念及表示.解:(1)真命题.与互为相反向量.(2)假命题.若a、b中有一个为零向量时,其方向是不确定的.(3)真命题.(4)假命题.终点相同并不能说明这两个向量的方向相同或相反.(5)假命题.共线向量所在的直线可以重合也可以平行.(6)假命题.向量是用有向线段来表示的,但并不是有向线段.温馨提示 对于零向量它比较特殊,它与任一向量平行.解题时加以注意.2共线向量(平行向量)的概念理解【例2】 如右图d、e、f分别是等腰rtabc各边中点,bac=90.(1)写出图中与、长度相等的向量;(2)分别写出图中与向量、共线的向量.思路分析:长度相等的向量包括相等向量、相反向量以及模相等的所有向量.共线与否只看方向不看大小.解:(1)与长度相等的向量有、.与长度相等的向量有、.(2)与共线的向量有、.与共线的向量有,.温馨提示 共线向量有以下四种情况:方向相同且模相等;方向相同且模不等;方向相反且模相等;方向相反且模不等.这样,也就找到了共线向量与相等向量的关系,即共线向量不一定是相等向量,而相等向量一定是共线向量.3.向量的模与零向量【例3】下列四个命题,其中正确命题的个数是( )若|a|=0,则a=0 若|a|=|b|,则a=b或a=-b 若ab,则|a|=|b| 若a=0,则-a=0a.1 b.2 c.3 d.4思路分析:考查零向量与向量的模的概念.解:分清0与0的区别,知错误;两个向量模相等,它们有无数种位置关系,故不正确;两向量平行模不一定相等,故错误.正确.答案:a温馨提示 容易忽略0与0的区别;误认为模相等时向量相等,把向量的模同实数的绝对值等同起来.【例4】 给出下列命题,其中正确命题的个数是( )零向量是唯一没有方向的向量 平面内的单位向量有且仅有一个 a与b共线,b与c是平行向量,则a与c是方向相同的向量 相等的向量必是共线向量a.1个 b.2个 c.3个 d.4个解析:零向量方向任意.平面内的单位向量有无数个.a与c方向可能相反.答案:a各个击破类题演练1如图b、c是线段ad的三等分点,分别以图中各点为起点和终点最多可以写出多少个互不相等的非零向量?思路分析:大小相等、方向相同的向量是相等的.只需从大小和方向两方面思考即可.解:可设ad的长度为3,那么长度为1的向量有6个,其中=,=;长度为2的向量有4个,其中=,;长度为3的向量有2个,所以最多可以写出6个互不相等的向量.变式提升1(1)如图,d、e、f分别是正abc的各边中点,则在以a、b、c、d、e、f六个点中任意两点为起点与终点的向量中,找出与向量平行的向量.解:与向量平行的向量有7个,分别是、.(2)判断下列命题的真假,并注意体会它们之间的联系与不同.若ab,则a=b.( )若|a|=|b|,则a=b.( )若|a|=|b|,则ab.( )若a=b,则|a|=|b|.( )答案:(1)假命题;(2)假命题;(3)假命题;(4)真命题.类题演练2不相等的两个向量a和b,有可能是平行向量吗?若不可能,请说明理由;若有可能,请把各种可能的情形一一列出.解:不相等的两个向量有可能平行.有如下三种情况:情况1:两个向量a和b中有一个是零向量而另一个是非零向量;情况2:两个向量a和b都为非零向量,且方向相同;情况3:两个向量a和b都为非零向量,且方向相反.变式提升2判断下列命题是否正确.(1)若ab,则a与b的方向相同或相反;(2)共线的向量.若起点不同,则终点一定不同.解:(1)错.若a、b中有一零向量,其方向不定.(2)错.如图,与共线,虽起点不同,但终点却相同.类题演练3下列命题中,正确的是( )a.|a|=|b|a=b b.|a|b|ab c.a=bab d.|a|=0a=0解法1:(直接法)如果两个向量相等,则这两个向量必定平行.应选c.解法2:(排除法)由向量的定义知:向量既有大小,也有方向,由向量具有方向性可排除a、b,零向量,数字0是两个不同的概念,零向量是不等于数字0的.应排除d,应选c.答案:c变式提升3根据图形回答下列问题.(1)写出与共线的向量;(2)写出与的模大小相等的向量;(3)写出与相等的向量.思路分析:利用三角形中位线定理解决线段的平行和相等问题,再将线段的平行、相等转化为共线的向量、相等的向量.解:(1)e、f分别是ac、ab的中点,efbc.又d是bc的中点,与向量共线的向量有:,.(2)与模相等的向量有:,.(3)与相等的向量有:,.温馨提示 零向量在共线向量问题中是一个特别的对
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 4《买东西的学问》第二课时(教学设计)-道德与法治四年级下册统编版
- 江都区2025年2月江苏扬州市江都区公开招聘事业单位工作人员54人笔试历年参考题库附带答案详解
- 武汉市2025中南财经政法大学校医院招聘非事业编制工作人员1人笔试历年参考题库附带答案详解
- 广州市2025广东广州市人力资源和社会保障局系统事业单位招聘事业编制人员258人公笔试历年参考题库附带答案详解
- 山东省2025中国海洋大学管理学院办公室工作人员招聘2人笔试历年参考题库附带答案详解
- 安庆市2025年安徽安庆市市直事业单位公开招聘123人笔试历年参考题库附带答案详解
- 宁波市2025浙江宁波市审计局下属事业单位招聘事业编制工作人员2人笔试历年参考题库附带答案详解
- 天津市2025天津师范大学第二批招聘(辅导员岗位)7人笔试历年参考题库附带答案详解
- 离婚协议书模板一:包含心理咨询服务及调解条款
- 科研合作项目合同:基因编辑技术在医学领域应用
- 医院收费室培训课件
- 信仰思政课件
- 重点小学小学语文毕业总复习小升初资料大全
- 产品测试管理办法
- 高原健康培训课件
- 2025年综合基础知识题库(含答案)
- 血站差错管理课件
- GB/T 18266.2-2025体育场所等级的划分第2部分:健身房
- 矿山技术管理课件
- 免疫复合物沉积-洞察及研究
- 第4节 跨学科实践:电路创新设计展示-教科版九年级《物理》上册教学课件
评论
0/150
提交评论