打印1二次函数各知识点及典型例题及.doc_第1页
打印1二次函数各知识点及典型例题及.doc_第2页
打印1二次函数各知识点及典型例题及.doc_第3页
打印1二次函数各知识点及典型例题及.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

二次函数知识点及典型例题专题一:二次函数的图象与性质考点1.二次函数图象的对称轴和顶点坐标二次函数的图象是一条抛物线,它的对称轴是直线x=-,顶点坐标是(-,).例1 已知,在同一直角坐标系中,反比例函数与二次函数的图像交于点(1)求、的值;(2)求二次函数图像的对称轴和顶点坐标. 考点2.抛物线与a、b、c的关系1. 二次项系数(决定了抛物线开口的大小和方向) (1) (2) 当时,抛物线开口向上,在对称轴x=-的左侧y随x的增大而减小;在对称轴的右侧,y随x的增大而增大; (3) 当时,抛物线开口向下,在对称轴的右侧,y随x的增大而增大;在对称轴的右侧,y随x的增大而减小.2. 一次项系数 在二次项系数确定的前提下,决定了抛物线的对称轴的符号的判定:对称轴在轴左边,则a、b同号,在轴的右侧则a、b异号。(简称“左同右异”)总结: 3. 常数项 决定了抛物线与轴交点的位置C0,交y轴于正半轴;C0,交y轴于负半轴;C=0,图象与原点相交。 yxO 图1例2 已知+c的图象如图1所示,则的图象一定过( )A第一、二、三象限B第一、二、四象限C第二、三、四象限D第一、三、四象限考点3.二次函数的平移 (左加右减,上加下减)例3 把抛物线y=3x2向上平移2个单位,得到的抛物线是( )A.y=3(x+2)2 B.y=3(x-2)2 C.y=3x2+2 D.y=3x2-2考点4.二次函数图象的画法1.五点绘图法:五点包括:顶点;与轴的交点;关于对称轴对称的点;与轴的交点,2.绘图步骤:第一步,利用配方法将二次函数化为顶点式,确定其开口方向、对称轴及顶点坐标;第二步,在对称轴两侧,左右对称地描点画图.(若与轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点.例4. “已知函数的图象经过点A(-1,0),这个二次函数图象的对称轴是x=-2。”求出题中的二次函数解析式,并画出二次函数图象。专题练习一1.对于抛物线y=x2+x,下列说法正确的是( )A.开口向下,顶点坐标为(5,3) B.开口向上,顶点坐标为(5,3)C.开口向下,顶点坐标为(-5,3) D.开口向上,顶点坐标为(-5,3)2.若抛物线y=x2-2x+c与y轴的交点为(0,-3),则下列说法不正确的是( )A.抛物线开口向上B.抛物线的对称轴是x=1C.当x=1时,y的最大值为-4D.抛物线与x轴交点为(-1,0),(3,0)图23.将二次函数y=x2的图象向左平移1个单位长度,再向下平移2个单位长度后,所得图象的函数表达式是_.4.小明从图2所示的二次函数的图象中,观察得出了下面五条信息:;,你认为其中正确信息的个数有_.(填序号)ABCD 图1菜园墙专题复习二:二次函数表达式的确定考点1.根据实际问题模型确定二次函数表达式例1 如图1,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园,设边长为米,则菜园的面积(单位:米)与(单位:米)的函数关系式为 (写出自变量的取值范围)考点2.根据抛物线上点的坐标确定二次函数表达式1.一般式:y=ax2+bx+c(a0);2.顶点式已知顶点(h,k):y=a(x-h)2+k(a0);3.双根式已知与x轴的两个交点(x1 ,0),(x2 ,0):y=a(x-x1)(x-x2)(a0).例2 已知抛物线的图象以A(-1,4)为顶点,且过点B(2,-5),求该抛物线的表达式.例3 已知一抛物线与x轴的交点是A(-2,0)、B(1,0),且经过点C(2,8).(1)求该抛物线的解析式;(2)求该抛物线的顶点坐标.专项练习二1.由于世界金融危机的不断蔓延,世界经济受到严重冲击.为了盘活资金,减少损失,某电器商场决定对某种电视机连续进行两次降价.若设平均每次降价的百分率是x,降价后的价格为y元,原价为a元,则y与x之间的函数表达式为( )图2A.y=2a(x-1) B.y=2a(1-x) C.y=a(1-x2) D.y=a(1-x)22.如图2,在平而直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于A、B两点,点A在x轴负半轴,点B在x轴正半轴,与y轴交于点C,且tanACO=,CO=BO,AB=3,求这条抛物线的函数解析式3.对称轴平行于y轴的抛物线与y轴交于点(0,-2),且x=1时,y=3;x=-1时y=1,求此抛物线的关系式.4.推理运算:二次函数的图象经过点,(1)求此二次函数的关系式;(2)求此二次函数图象的顶点坐标;(3)填空:把二次函数的图象沿坐标轴方向最少平移 个单位,使得该图象的顶点在原点专题三:二次函数与一元二次方程的关系考点1.根据二次函数的自变量与函数值的对应值,确定方程根的范围一元二次方程ax2+bx+c=0就是二次函数y=ax2+bx+c当函数y的值为0时的情况.例1 根据下列表格中二次函数y=ax2+bx+c的自变量与函数值的对应值,判断方程ax2+bx+c=0(a0,a,b,c,为常数)的一个解的范围是()6.176.186.196.20考点2.根据二次函数的图象确定所对应的一元二次方程的根.抛物线与轴有两个交点一元二次方程有两个不相等实根抛物线与轴只有一个交点一元二次方程有两个相等的实数根抛物线与轴无交点一元二次方程无实数根.4 图1例2 已知二次函数y=-x2+3x+m的部分图象如图1所示,则关于x的一元二次方程-x2+3x+m=0的解为_.考点3.抛物线的交点个数与一元二次方程的根的情况(1)当时,图象与轴交于两点 (2)当时,图象与轴只有一个交点; (3) 当时,图象与轴没有交点.例3 在平面直角坐标系中,抛物线与轴的交点的个数是( ) 图2A.3B.2C.1D.0专项练习三1.抛物线y=kx2-7x-7的图象和x轴有交点,则k的取值范围是_.2.已知二次函数的部分图象如图2所示,则关于的一元二次方程的解为 图33.已知函数的图象如图3所示,那么关于的方程 的根的情况是( )A.无实数根B.有两个相等实数根C.有两个异号实数根D.有两个同号不等实数根图44. 二次函数的图象如图4所示,根据图象解答下列问题:(1)写出方程的两个根(2)写出不等式的解集(3)写出随的增大而减小的自变量的取值范围(4)若方程有两个不相等的实数根,求的取值范围专题4.用二次函数解决最值问题(多用配方法或最值公式)1. 面积问题;2. 销售问题;3. 拱桥问题(建立直角坐标系)。 例1已知边长为4的正方形截去一个角后成为五边形ABCDE(如图),其中AF=2,BF=1试在AB上求一点P,使矩形PNDM有最大面积例2 某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:x(元)152030y(件)252010若日销售量y是销售价x的一次函数(1)求出日销售量y(件)与销售价x(元)的函数关系式;(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?专项练习四1、如图,矩形ABCD的两边长AB=18cm,AD=4cm,点P,Q分别从点A,B同时出发,点P在边AB上沿AB方向以每秒2cm 的速度匀速运动,点Q在边BC上沿BC方向以每秒1cm 的速度匀速运动,设运动时间为x 秒,PBQ的面积为y(cm2)(1)求y 关于x 的函数关系式,并写出x的取值范围;(2)求PBQ的面积的最大值。 2.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施。经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。(1)若商场平均每天要盈利

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论