(全国通用)高三数学 第16课时 第二章 函数 指数函数与对数函数专题复习教案.doc_第1页
(全国通用)高三数学 第16课时 第二章 函数 指数函数与对数函数专题复习教案.doc_第2页
(全国通用)高三数学 第16课时 第二章 函数 指数函数与对数函数专题复习教案.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第16课时:第二章 函数指数函数与对数函数一课题:指数函数与对数函数二教学目标:1掌握指数函数与对数函数的概念、图象和性质;2能利用指数函数与对数函数的性质解题三教学重点:运用指数函数、对数函数的定义域、单调性解题四教学过程:(一)主要知识:1指数函数、对数函数的概念、图象和性质; 2同底的指数函数与对数函数互为反函数;(二)主要方法:1解决与对数函数有关的问题,要特别重视定义域; 2指数函数、对数函数的单调性决定于底数大于1还是小于1,要注意对底数的讨论;3比较几个数的大小的常用方法有:以和为桥梁;利用函数的单调性;作差(三)例题分析:例1(1)若,则,从小到大依次为 ; (2)若,且,都是正数,则,从小到大依次为 ; (3)设,且(,),则与的大小关系是( ) () () () ()解:(1)由得,故 (2)令,则, ,;同理可得:,(3)取,知选()例2已知函数,求证:(1)函数在上为增函数;(2)方程没有负数根证明:(1)设,则,;,且,即,函数在上为增函数;(2)假设是方程的负数根,且,则, 即, 当时,而由知. 式不成立;当时,而.式不成立综上所述,方程没有负数根例3已知函数(且)(高考计划考点15,例4)求证:(1)函数的图象在轴的一侧; (2)函数图象上任意两点连线的斜率都大于证明:(1)由得:,当时,即函数的定义域为,此时函数的图象在轴的右侧;当时,即函数的定义域为,此时函数的图象在轴的左侧函数的图象在轴的一侧;(2)设、是函数图象上任意两点,且,则直线的斜率,当时,由(1)知,又,;当时,由(1)知,又,函数图象上任意两点连线的斜率都大于(四)巩固练习:1已知函数,若,则、从小到大依次为;(注:)2若为方程的解,为不等式的解,为方程的解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论