福建省光泽县第二中学高中数学 1.2.2 解三角形应用举例(第1、2课时)教案 新人教A版必修5(1).doc_第1页
福建省光泽县第二中学高中数学 1.2.2 解三角形应用举例(第1、2课时)教案 新人教A版必修5(1).doc_第2页
福建省光泽县第二中学高中数学 1.2.2 解三角形应用举例(第1、2课时)教案 新人教A版必修5(1).doc_第3页
福建省光泽县第二中学高中数学 1.2.2 解三角形应用举例(第1、2课时)教案 新人教A版必修5(1).doc_第4页
福建省光泽县第二中学高中数学 1.2.2 解三角形应用举例(第1、2课时)教案 新人教A版必修5(1).doc_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省光泽县第二中学2014高中数学 1.2.2 解三角形应用举例(第1、2课时)教案 新人教a版必修5教学目标知识与技能:能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语过程与方法:首先通过巧妙的设疑,顺利地引导新课,为以后的几节课做良好铺垫。其次结合学生的实际情况,采用“提出问题引发思考探索猜想总结规律反馈训练”的教学过程,根据大纲要求以及教学内容之间的内在关系,铺开例题,设计变式,同时通过多媒体、图形观察等直观演示,帮助学生掌握解法,能够类比解决实际问题。对于例2这样的开放性题目要鼓励学生讨论,开放多种思路,引导学生发现问题并进行适当的指点和矫正情感态度与价值观:激发学生学习数学的兴趣,并体会数学的应用价值;同时培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力教学重点实际问题中抽象出一个或几个三角形,然后逐个解决三角形,得到实际问题的解教学难点根据题意建立数学模型,画出示意图教学过程.课题导入1、复习旧知复习提问什么是正弦定理、余弦定理以及它们可以解决哪些类型的三角形?2、设置情境请学生回答完后再提问:前面引言第一章“解三角形”中,我们遇到这么一个问题,“遥不可及的月亮离我们地球究竟有多远呢?”在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?我们知道,对于未知的距离、高度等,存在着许多可供选择的测量方案,比如可以应用全等三角形、相似三角形的方法,或借助解直角三角形等等不同的方法,但由于在实际测量问题的真实背景下,某些方法会不能实施。如因为没有足够的空间,不能用全等三角形的方法来测量,所以,有些方法会有局限性。于是上面介绍的问题是用以前的方法所不能解决的。今天我们开始学习正弦定理、余弦定理在科学实践中的重要应用,首先研究如何测量距离。.讲授新课(1)解决实际测量问题的过程一般要充分认真理解题意,正确做出图形,把实际问题里的条件和所求转换成三角形中的已知和未知的边、角,通过建立数学模型来求解例题讲解(2)例1、如图,设a、b两点在河的两岸,要测量两点之间的距离,测量者在a的同侧,在所在的河岸边选定一点c,测出ac的距离是55m,bac=,acb=。求a、b两点的距离(精确到0.1m)启发提问1:abc中,根据已知的边和对应角,运用哪个定理比较适当?启发提问2:运用该定理解题还需要那些边和角呢?请学生回答。分析:这是一道关于测量从一个可到达的点到一个不可到达的点之间的距离的问题,题目条件告诉了边ab的对角,ac为已知边,再根据三角形的内角和定理很容易根据两个已知角算出ac的对角,应用正弦定理算出ab边。解:根据正弦定理,得 = ab = = = = 65.7(m)答:a、b两点间的距离为65.7米变式练习:两灯塔a、b与海洋观察站c的距离都等于a km,灯塔a在观察站c的北偏东30,灯塔b在观察站c南偏东60,则a、b之间的距离为多少?老师指导学生画图,建立数学模型。解略:a km例2、如图,a、b两点都在河的对岸(不可到达),设计一种测量a、b两点间距离的方法。分析:这是例1的变式题,研究的是两个不可到达的点之间的距离测量问题。首先需要构造三角形,所以需要确定c、d两点。根据正弦定理中已知三角形的任意两个内角与一边既可求出另两边的方法,分别求出ac和bc,再利用余弦定理可以计算出ab的距离。解:测量者可以在河岸边选定两点c、d,测得cd=a,并且在c、d两点分别测得bca=,acd=,cdb=,bda =,在adc和bdc中,应用正弦定理得 ac = = bc = = 计算出ac和bc后,再在abc中,应用余弦定理计算出ab两点间的距离 ab = 分组讨论:还没有其它的方法呢?师生一起对不同方法进行对比、分析。变式训练:若在河岸选取相距40米的c、d两点,测得bca=60,acd=30,cdb=45,bda =60略解:将题中各已知量代入例2推出的公式,得ab=20评注:可见,在研究三角形时,灵活根据两个定理可以寻找到多种解决问题的方案,但有些过程较繁复,如何找到最优的方法,最主要的还是分析两个定理的特点,结合题目条件来选择最佳的计算方式。学生阅读课本4页,了解测量中基线的概念,并找到生活中的相应例子。.课堂练习课本第14页练习第1、2题.课时小结解斜三角形应用题的一般步骤:(1)分析:理解题意,分清已知与未知,画出示意图(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解(4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解.课后作业课本第22页第1、2、3题板书设计授后记课题: 2.2解三角形应用举例第二课时授课类型:新授课教学目标知识与技能:能够运用正弦定理、余弦定理等知识和方法解决一些有关底部不可到达的物体高度测量的问题过程与方法:本节课是解三角形应用举例的延伸。采用启发与尝试的方法,让学生在温故知新中学会正确识图、画图、想图,帮助学生逐步构建知识框架。通过3道例题的安排和练习的训练来巩固深化解三角形实际问题的一般方法。教学形式要坚持引导讨论归纳,目的不在于让学生记住结论,更多的要养成良好的研究、探索习惯。作业设计思考题,提供学生更广阔的思考空间情感态度与价值观:进一步培养学生学习数学、应用数学的意识及观察、归纳、类比、概括的能力教学重点结合实际测量工具,解决生活中的测量高度问题教学难点能观察较复杂的图形,从中找到解决问题的关键条件教学过程.课题导入提问:现实生活中,人们是怎样测量底部不可到达的建筑物高度呢?又怎样在水平飞行的飞机上测量飞机下方山顶的海拔高度呢?今天我们就来共同探讨这方面的问题.讲授新课范例讲解例1、ab是底部b不可到达的一个建筑物,a为建筑物的最高点,设计一种测量建筑物高度ab的方法。分析:求ab长的关键是先求ae,在ace中,如能求出c点到建筑物顶部a的距离ca,再测出由c点观察a的仰角,就可以计算出ae的长。解:选择一条水平基线hg,使h、g、b三点在同一条直线上。由在h、g两点用测角仪器测得a的仰角分别是、,cd = a,测角仪器的高是h,那么,在acd中,根据正弦定理可得ac = ab = ae + h = ac+ h = + h例2、如图,在山顶铁塔上b处测得地面上一点a的俯角=54,在塔底c处测得a处的俯角=50。已知铁塔bc部分的高为27.3 m,求出山高cd(精确到1 m)师:根据已知条件,大家能设计出解题方案吗?(给时间给学生讨论思考)若在abd中求cd,则关键需要求出哪条边呢?生:需求出bd边。师:那如何求bd边呢?生:可首先求出ab边,再根据bad=求得。解:在abc中, bca=90+,abc =90-,bac=- ,bad =.根据正弦定理, = 所以 ab =解rtabd中,得 bd =absinbad=将测量数据代入上式,得 bd = = 177 (m)cd =bd -bc177-27.3=150(m)答:山的高度约为150米.师:有没有别的解法呢?生:若在acd中求cd,可先求出ac。师:分析得很好,请大家接着思考如何求出ac?生:同理,在abc中,根据正弦定理求得。(解题过程略)例3、如图,一辆汽车在一条水平的公路上向正东行驶,到a处时测得公路南侧远处一山顶d在东偏南15的方向上,行驶5km后到达b处,测得此山顶在东偏南25的方向上,仰角为8,求此山的高度cd.师:欲求出cd,大家思考在哪个三角形中研究比较适合呢?生:在bcd中师:在bcd中,已知bd或bc都可求出cd,根据条件,易计算出哪条边的长?生:bc边解:在abc中, a=15,c= 25-15=10,根据正弦定理, = , bc = 7.4524(km)cd=bctandbcbctan81047(m)答:山的高度约为1047米.课堂练习课本第17页练习第1、2、3题.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论