免费预览已结束,剩余5页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2013年陕西高考理科数学预测试卷(二)一、选择题:本大题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 复数在复平面上对应的点的坐标是( ) a b. c. d. 2. 已知全集 集合,,下图中阴影部分所表示的集合为( )a b. c. d. 3函数的零点所在区间( ) a b. c. d. 4. 已知向量,且,则等于( )a b c d 5. 某赛季甲、乙两名篮球运动员各13场比赛得分情况用茎叶图表示如下:甲乙988177996102256799532030237104根据上图,对这两名运动员的成绩进行比较,下列四个结论中,不正确的是( )a甲运动员得分的极差大于乙运动员得分的极差b甲运动员得分的的中位数大于乙运动员得分的的中位数c甲运动员的得分平均值大于乙运动员的得分平均值d甲运动员的成绩比乙运动员的成绩稳定6一个锥体的主视图和左视图如图所示,下面选项中,不可能是该锥体的俯视图的是( ) 7若椭圆:()和椭圆:()的焦点相同且.给出如下四个结论: 椭圆和椭圆一定没有公共点; ; ; .其中,所有正确结论的序号是( )a b. c d. 8. 在一个正方体中,为正方形四边上的动点,为底面正方形的中心,分别为中点,点为平面内一点,线段与互相平分,则满足的实数的值有( ) a. 0个 b. 1个 c. 2个 d. 3个9.现有一种密码,它是由个,个,个和个组成的七位代码,则这种密码的个数是( ) 10. 给出以下命题:(1),使得; (2)函数在区间上是单调减函数;(3)“”是“”的充分不必要条件;(4)在中,“”是“”的必要不充分条件。其中是真命题的个数是( ) 二、填空题:本大题共5小题,每小题5分,共25分.11点在不等式组表示的平面区域内,则的最大值为_.12运行如图所示的程序框图,若输入,则输出的值为 .13的展开式中的常数项为 14已知数列满足, ,记数列的前项和的最大值为,则 .15.选做题:考生只选做其中一题,两题全答的,只计前一题的得分。a.(坐标系与参数方程选做题)以直角坐标系的原点为极点,轴的正半轴为极轴,并在两种坐标系中取相同的长度单位。已知直线的极坐标方程为,它与曲线(为参数)相交于两点和,则=_.b.(几何证明选讲选做题)如图,从圆外一点引圆的切线和割线,已知,圆的半径为,则圆心到的距离为 三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.16.(本小题共12分)已知函数 的最小正周期为.(1)求的值;(2)求函数的单调区间及其图象的对称轴方程.17.(本小题共12分)某商场一号电梯从1层出发后可以在2、3、4层停靠.已知该电梯在1层载有4位乘客,假设每位乘客在2、3、4层下电梯是等可能的.(1)求这4位乘客中至少有一名乘客在第2层下电梯的概率;(2)用表示4名乘客在第4层下电梯的人数,求的分布列和数学期望.18.(本小题共12分)如图,四棱锥的底面是直角梯形,和是两个边长为的正三角形,为的中点,为的中点(1)求证:平面;(2)求证:平面;(3)求直线与平面所成角的正弦值19(本小题共12分)在平面直角坐标系中,设点,以线段为直径的圆经过原点.(1)求动点的轨迹的方程;(2)过点的直线与轨迹交于两点,点关于轴的对称点为,试判断直线是否恒过一定点,并证明你的结论.20. (本小题共13分)已知数列的前项和为,首项,且对于任意都有。(1)求的通项公式;(2)设,且数列的前项之和为,求证:。21.(本小题共14分)已知函数有两个极值点,且直线与曲线相切于点。(1)求和(2)求函数的解析式;(3)在为整数时,求过点和相切于一异于点的直线方程参考答案一、选择题(本大题共10小题,每小题5分,共50分)题号12345678910 答案dacbdcbcdc二、填空题(本大题共5小题,每小题5分. 共25分)11. 6 12. 11 13. 14. 15. a. b. 三、解答题(本大题共6小题,共75分)16.解:(1) 2分, 3分因为最小正周期为,所以,解得, 4分所以, 5分所以. 6分(2)分别由,可得, 8分所以,函数的单调增区间为;的单调减区间为 10分由得.所以,图象的对称轴方程为. 12分17.解:(1) 设4位乘客中至少有一名乘客在第2层下电梯的事件为, 1分由题意可得每位乘客在第2层下电梯的概率都是, 3分则 . 6分(2) 的可能取值为0,1,2,3,4, 7分由题意可得每个人在第4层下电梯的概率均为,且每个人下电梯互不影响,所以,. 9分01234 11分. 12分f18.(1)证明:设为的中点,连接,则,四边形为正方形,为的中点,为的交点, , .2分,在三角形中,3分,平面; 4分(2)方法1:连接,为的中点,为中点,平面,平面,平面. 8分f方法2:由()知平面,又,所以过分别做的平行线,以它们做轴,以为轴建立如图所示的空间直角坐标系,由已知得:,则,.平面,平面,平面; 8分(3) 设平面的法向量为,直线与平面所成角,则,即,解得,令,则平面的一个法向量为,又则,直线与平面所成角的正弦值为. 12分19解:(1)由题意可得, 2分所以,即 4分即,即动点的轨迹的方程为 5分(2)设直线的方程为,,则.由消整理得, 6分则,即. 7分. 9分直线 12分即所以,直线恒过定点. 12分20.解:()解法一:由可得当时,由-可得,所以,即当时,所以,将上面各式两边分别相乘得,即(),又,所以(),此结果也满足,故对任意都成立。7分解法二:由及可得,即,当时,(此式也适合),对任意正整数均有,当时,(此式也适合),故。7分()依题意可得13分21解:(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 具身智能+建筑工地智能安全帽研发方案可行性报告
- 2025年区块链+数字建筑解决方案研究报告
- 2025年电力市场化改革与电价体系洞察报告
- 凸轮轴、曲轴建设项目可行性分析报告(总投资11000万元)
- 储物柜项目可行性分析报告范文(总投资5000万元)
- 2026-2031【完整版】年中国零食行业投资与经营风险防范措施研究报告
- 第十六章 二次根式 单元测试卷(B) 沪教版数学八年级上学期(附答案)
- 物联网模组生产线新建项目商业投资计划书
- 证券投资学课程设计分析报告
- 物联网平台策划书3
- 高考语文专题复习:《淮南子》文言文阅读训练
- 含容电路单棒切割课件
- 质量管理看板
- 苏州市立达中学
- 初中生物实验室标准仪器配置及初中生物实验器材清单
- 四年级语文上册第七单元21古诗三首课件新人教版
- 《高效人士的问题解决术》
- GB/T 9145-2003普通螺纹中等精度、优选系列的极限尺寸
- GB/T 23510-2009车用燃料甲醇
- 劳务派遣人员考核方案
- 膝关节镜手术配合
评论
0/150
提交评论