浙江省泰顺县新城学校七年级数学下册 4.3 解二元一次方程组教案 浙教版.doc_第1页
浙江省泰顺县新城学校七年级数学下册 4.3 解二元一次方程组教案 浙教版.doc_第2页
浙江省泰顺县新城学校七年级数学下册 4.3 解二元一次方程组教案 浙教版.doc_第3页
浙江省泰顺县新城学校七年级数学下册 4.3 解二元一次方程组教案 浙教版.doc_第4页
浙江省泰顺县新城学校七年级数学下册 4.3 解二元一次方程组教案 浙教版.doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

4.3解二元一次方程组 教学内容分析:本节课是在学生已具备的知识基础二元一次方程的解与二元一次方程组的解的概念,而如何求出二元一次方程组的解,是学生最关心的、最迫切想知道的。本课要解决的就是让学生掌握用代入法解二元一次方程组,体验数学的化归思想。求二元一次方程的解是学生必须掌握的技能,也为下面利用二元一次方程组解应用题打下基础。教学目标:1、解解二元一次方程组的“消元”思想,体会学习数学中的“化未知为已知”,“化复杂为简单”的化归思想。2、了解代入法的概念,掌握代入法的基本步骤。3、会用代入法求二元一次方程组的解。教学重点、难点:重点是了解代入法的一般步骤,会用代入法解二元一次方程,难点是对代入消元法解方程组过程的理解及例2中当方程组设有一个字每系数为1(或1)时,如何用一个未知数代替另一个未知数。教学准备:多媒体动画显示梨换成苹果与砝码的过程(也可用投影片抽拉,或实物演示)教学过程:用我国一个古代问题作为情景引入,既激发学生的求知欲,也体现了人文精神。用多媒体(或投影片抽拉),能让学生直观地看出“消元”的过程能让学生深刻地体验到转化的过程,展示了“直观教学”的优势。一、创设情景,引出课题1、看课文的节前语,提出一个中国古代的问题,今有鸡兔同笼、上有三十五头,下有九十四足,问鸡兔各几头?根据学生列出的方程组问:如何求它的解?2、引出课题:4.3解二元一次方程组二、直观显示,体验转化1、用多媒体(或投影片抽拉或实物演示)显示用(y)代替苹果和砝码(x10)把方程组中的二元转化为一元的过程。2、合作学习,求出x、y的值。3、让学生谈谈如何求二元一次方程组的解。4、归纳:解二元一次方程组的基本思路是“消元”即二元一元,用“代入”的方法进行“消元”,这种解方程组的方法称为代入消元法,简称代入法。三、学习新知,形成体系用动画(或投影片抽拉)显示方程中的(y1)代替方程中的x的过程:进一步让学生体会“消元”是如何进行的。要求学生口头检验其方程组的解,能培养学生良好的学习习惯与思维品质。这一组练习是刚刚学习的代入法的应用,讲解时可指出2xy2中如何用一个未知数表示另一个未知数。用x表示y,还是用y表示x,应让学生思考、体会,然后选择。把和用彩笔代替,抓住了本节课的重点与难点,从例1到例2是一个从易到难的过程,体现了循序渐进的教学原则。2y3x=1 1、典例讲解:例1,解方程组xy1先让学生议论:如何用代入法解方程组?这里的合作学习,让学生充分观察、讨论,然后自觉地归纳出步骤,比教师一步一步地解析给学生听,要好得多,能让学生完成知识的自我建构。这里的练习,教师要及时发现学生的错误,选取一些典型性的错误,及时提出。自主归纳,能有效地让学生把新知纳入自己的知识结构,当然,教师的强调、补充、修正是必不可少的。师归纳:关键是把“二元”“一元”,用y1代替x代入式中的x(可以动画显示y1代替x的过程)解:把代入,得2y3(y1)12y3y31(求得y后,让学生讨论:如何求x,代入还是代入简便?)把y2代入,得x211方程组的解是注意:把2y-3(y-1)1中的(y1),x211中的2用彩色粉笔处理。问:且不是原方程的解,应如何检验?生:把解代入方程组。师:解方程组与解方程一样,要养成口头检验的良好习惯。2、做一做,p94做一做(1),(2)。2y7x=8 3、典例讲解:例2,解方程组3x8y100问:方程组的两个方程中未知数系数都不是1(或1)如何实现用一个未知数表示另一个未知数。生:(或)师指出:一般选择系数相对较小的未知数,用另一个未知数的代数式表示,这样代入后能使计算简便。解:由得2x87y,即把代入得(讨论:求x的值时,把代入方程中都可,代入哪个方程比较简便?)把代入,得方程组的解是如果学生基础好,解题能力强,那么可选取一些题让学生“吃饱”如例1可用多种方法解题,如果学生错误较多,可用练习(1)进行防练习2、3两题是针对作业题与第5题的设计的。4、合作学习:观察刚才用代入法解方程组的过程,用代入法解二元一次方程组的一般步骤怎样?归纳:用代入消解二元一次方程组的一般步骤是:(投影显示,师用彩色粉笔在例2的解题过程中标上序号)。(1)将方程组中的一个方程变形,使得一个未知数用能含有另一个未知数的代数式表示。(2)用这个代数式代替另一个方程中相应的未知数,得到一个一元一次方程,求得一个未知数的值。(3)把这个未知数的值代入代数式,求得另一个未知数的值。(4)写出方程组的解。5、做一做,p95,课内练习(1)(4)。投影显示学生解题过程。根据学生练习中存在的问题指出:用一个未知数表示另一个未知数要注意移项变号,得一元一次方程后,要注意去分母、去括号、移项等出现的错误。6、解决本节课开头提出的问题。四、归纳小结,充实结构问:这节课同学们有什么收获?可以围绕以下几个问题讨论:1、解二元一次方程组的基本思想是“消元”即消去一个未知数。2、代入法的一般步骤。3、养成口头检验的良好习惯。4、在解题过程中,常会出现什么错误?五、布置作业教科书p95作业题、作业本,或根据学生的实际情况,从下列的各选题中选做。备选例题解方程组2x3y=7备选练习:1、用代入解方程组 时,消去x数,得到y的3x+2y4 一元一次方程。正确的是()a、3(73y)+2y=4 b、c、 d、2、解方程组:(1)(2)3、已知二元一次方程组的两个解为和求a、b的值设计思想:设计说明本题既对上节课的复习,也是本节课的引例,起着承上启下的作用。要及时鼓励学生的求异思维与造新思维,激发学生的学习热情。要让学生理解加减法,不是件容易的事,通过实物或多媒体能给学生以直观的形象,把形象思维与抽象思维有机结合,避免了学生机械的模仿。 教学内容分析:通过上节课的学习,学生已体验到解二元一次方程组的基本思路是消元,可以通过代入法来达到消元的目的,但也发现当方程组的两个方程中没有字母的系数为1(或1)时,用一个未知数的代数或表示另一个未知数代入另一个数,计算比较麻烦,这样本节课的加减消元法可使消元的手段变得简单,本节课要使学生掌握用加减法解二元一次方程组。这样学生解二元一次方程组的技能已形成,为下面解应用题,为后来的解二元一次方程组打下基础。教学目标:1、体会加减消元法形成的思路。2、了解加减消元法解二元一次方程组一般步骤。3、掌握用加减法解二元一次方程组。4、初步形成用便捷的消元法(即加减法和代入法)来解题。教学重点、难点:重点是了解加减法的一般步骤,会用加减法解二元一次方程。难点是如例4那样没有未知数的系数相同(或相反数),要通过将一个(或两个)方程乘以一个常数以达到未知数系数相同(或相反)。教学准备:多媒体动画显示拿掉“正方形”和“圆柱体”天平仍平衡的过程(或投影片抽拉或实物演示)。教学过程:一、复习旧知练习引入1、你是如何用代入法解二元一次方程组的? 2x+3y=1002、解方程组 4x+3y=130投影显示学生的解题过程,对把(1002x)作为3y整体代入的同学要及时表扬与激励。二、直观显示体验转化1、同多媒体(投影片抽拉或实物)显示天平的一边拿掉2个小立方体和3个小圆柱,右边拿掉100克的砝码,天平仍显示平衡。2、合作学习:如何使方程组达到消元的目的。3、让学生发表对解本题的体会(方法的不同;比较两种解法哪个更便捷)。4、归纳:通过将方程组中的两个方程相加式相减,消去其中的一个未知数,转化为一元一次方程,这种解二元一次方程组的方法叫做加减消元法(简称加减法)。三、学习新知自主建构加减法的具体实施,开始阶段让学生掌握这种打“抄稿”的形式,能减少学生计算的错误。把代哪条方程,可以让学生多去尝试,然后体会代入系数绝对值较小的方程中比较便捷。本例题的教学要注意与学生的互动,让学生去尝试、体验,能让学生完成知识的自我构建。这种错误是学生最容易发生的,教学中一定要强调。让学生合作讨论得出,能让学生“意会”就行。2s+3t21、典例选讲例3,解方程组2s6t1先让学生观察讨论:如何使用加减法,然后学生发表意见,师在黑板上演算:可以与上节课的加减法相比较,让学生形成辨别用何种方法便捷的能力。对学生归纳得不完整的地方,老师均可修正、补充、强调。例1先将(ab)与(ab)看成一个整体,运用整体思想解题,先求ab、ab的值,再求a、b的值。例2主要让学生自主掌握练系数解题的步骤。第1题是加强学生用加减法解二元一次方程组的技能。第2题是运用待定系数法解题,第3题主要是针对课后作业的组题设计的。解:得9t3t把t代入,(代入可以吗?),得方程组的解是2、做一做,p97的做一做3、归纳:将两方程相加还是相减看什么?(相同字母数相同用减法,相同字母系数相反用加法)。3x2y114、典例选讲:例4,解方程组2x3y16先让学生观察,然后问:本题与上面刚刚所做的二道题有什么区别?应用什么方法来解?(如果学生有回答用代入法来解,可以让学生先动手用代入法来解一解,再问:本题能否用加减法?如何使x或y的系数变为相等或相反?)解:3,得,9x6y332,得,4x6y32,得,13x65x5把x5代入,得352y11解得y2归纳:方程变形时,要乘以相同字母的最小公倍数;方程左边乘以某一个常数时,不能忘了右边的常数也要乘。变式:本题如果消去x,那么如何将方程变形?5、学生合作讨论:归纳解二元一次方程组的一般步骤。(1)将其中一个未知数的系数化成相同(或互为相反数)。(2)通过相减(或相加)消去这个未知数,得一个一元一次方程。(3)解这个一元一次方程,得到这个未知数的值。(4)将求得的未知数值代入原方程组中的任一个方程,求得另一个未知数的值。(5)写出方程组的解。6、做一做:p98课内练习。7、探究活动。(p98课本的探究活动)探究后让学生发表解本题的心得,哪种解法简便,为什么?四、归纳小节充实提高问:这节课大家有什么收获?或以围绕以下几个问题开展讨论:1、解二元一次方程组有两种消元途径代入法、加减法。2、加减法的一般步骤。3、用加减法解题常会出现什么错误?4、解二元一次方程组用加减法还是用代入法简便,应如何选择?五、布置作业教科书p99作业题,作业本,或根据学生的实际情况,从下列的备选题中选做。备选例题:例1、解二元一次方程组例2、已知是方程组的解,求a、b的值。备选练习:1、解下列二元一次方程组:(1)(2)2、关于x、y的二元一次方程组与的解相同,求a、b的值。3、一个两位数的十位数字与个位数字的和

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论