




已阅读5页,还剩26页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高教社杯全国大学生数学建模竞赛承 诺 书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。我们参赛选择的题号是(从A/B/C/D中选择一项填写): 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 西安理工大学 参赛队员 (打印并签名) :1. 梁楠 2. 杨帆 3. 张璇 指导教师或指导教师组负责人 (打印并签名): 日期: 2012 年 8 月 18 日高教社杯全国大学生数学建模竞赛编 号 专 用 页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):29自习教室开放的优化管理摘要由于上自习的人数有限,为了提高同学们的满意度,同时为了达到节约用电的目的,提出要求合理安排开放晚自习的教室,以便更好的对同学们上晚自习进行集中管理,也能改善用电浪费的情况。针对以上要求,我们对该问题作出了如下解答:第一问目标单一,且为整数规划问题。第二问引入学生区到自习区满意率这一条件,使得问题变为多目标问题。第三问是第一、二问的延伸。本文针对问题1,2,3分别建立了最优管理方法的模型。问题一:要求节约电能我们把它归结为整数规划问题,把每个教室是否开放作为变元,对此建立0-1型整数规划模型。所以在满足题中要求的情况下我们安排了3、4、5、6、8、9、10、11、12、13、14、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43号教室开放,共计38个教室。每晚最少用电量为:237.9870kwh。问题二:要求节约用电的情况下,还要提高同学们的满意程度,并且尽量开放同区的教室。属于多目标决策模型。最终得到每晚开放的教室编号1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、30、31、32、33、34、35、37、38、40、41、42、43、44、45,共42个教室。每晚自习教室总的用电量为:251.649kwh。问题三:要求在1,2的基础上由于人数的增多,要求再建新教室,且要求每个区最多新建一个新教室。由于满意度要求变高,因此在问题二满意度等级划分的基础上(见表2.2.1),假设学生折返选择自习室的次数不超过3次,则认为对其总体的满意度不构成影响;若超过3次,超过的部分按每次满意度降低1%计算。假设临近期末时,学生为了抓紧时间,若三次都未找到合适的教室,则第四次直接去距其较远的B6或B8区。最终得到每晚开放的原有教室的编号为1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、27、28、29、30、31、32、33、34、35、39、40、41、42、43、44、45,共41个教室。临时搭建的教室编号为(为按照编号为的教室的规格临时搭建的教室),共6个教室。综上所述,每晚开放的教室数为49个。每晚自习教室总的用电量为:286.194kwh。关键词:0-1整数规划;最优解;满意度;多目标决策.一 问题重述近年来,大学用电浪费比较严重,集中体现在学生上晚自习上,一种情况是去某个教室上自习的人比较少,但是教室内的灯却全部打开,第二种情况是晚上上自习的总人数比较少,但是开放的教室比较多,这要求我们提供一种最节约、最合理的管理方法。管理人员只需要每天晚上开一部分教室供学生上自习,每天晚上从7:00-10:00开放(如果哪个教室被开放,则假设此教室的所有灯管全部打开)。表1、表2是某学校收集的部分数据,请完成以下问题。1.假如学校有8000名同学,每个同学是否上自习相互独立,上自习的可能性为0.7.要使需要上自习的同学满足程度不低于95%,开放的教室满座率不低于4/5,同时尽量不超过90%。问该安排哪些教室开放,能达到节约用电的目的. 2.假设这8000名同学分别住在10个宿舍区,现有的45个教室分为9个自习区,按顺序5个教室为1个区,即1,2,3,4,5为第1区,41,42,43,44,45为第9区。这10个宿舍区到9个自习区的距离见表2。学生到各教室上自习的满意程度与到该教室的距离有关系,距离近则满意程度高,距离远则满意程度降低。假设学生从宿舍区到一个自习区的距离与到自习区任何教室的距离相同。请给出合理的满意程度的度量,并重新考虑如何安排教室,既达到节约用电目的,又能提高学生的满意程度。另外尽量安排开放同区的教室。3.假设临近期末,上自习的人数突然增多,每个同学上自习的可能性增大为0.85,要使需要上自习的同学满足程度不低于99%,开放的教室满座率不低于4/5,同时尽量不超过95%。这时可能出现教室不能满足需要,需要临时搭建几个教室。假设现有的45个教室仍按问题2中要求分为9个区。搭建的教室紧靠在某区,每个区只能搭建一个教室,搭建的教室与该区某教室的规格相同(所有参数相同),学生到该教室的距离与到该区任何教室的距离假设相同。问至少要搭建几个教室,并搭建在什么位置,既达到节约用电目的,又能提高学生的满意程度。.二 问题分析问题一要求合理的安排自习教室的开放,这样既最大程度满足同学们上自习的需求,又最大程度上实现了学校节约了电力资源和对同学们的集中管理的要求。问题一属于整数规划的数学问题。题目附件给出了45个教室的座位情况和每个教室具体的电灯数及相应的每个电灯的功率,数据较多且都为整数,要求求解开放的具体教室及相应教室的实际上座率。基于以上原因,我们建立了一个0-1整数规划模型,求解应该安排哪些教室,已达到节约用电的目的。问题二是在问题一的基础上将宿舍划分为10个宿舍区,将现有的45个教室划分为9个自习区,且各宿舍区到各自习区的距离不等,而学生的满意程度又与两区间的距离紧密相关。假设某宿舍区的同学上自习的满意程度不仅取决于自己所在宿舍区到各自习区的距离,还会受到其它宿舍区到自习区距离的影响,如某同学所在宿舍区到距其最近的自习区的距离为,而另一同学所在宿舍区到距其最近的自习区的距离为,若,则第一个同学受第二个同学的影响,其满意程度较单独考虑是会有所降低。基于以上分析,我们从全局的角度考虑,将宿舍区到自习区的所有距离进行分析,找出最近和最远距离,最终确定合理的满意度的度量标准。此问题中,我们依旧假设,当开放的教室的满座率满足时,学生对教室人数的满意度最高,此时可只考虑宿舍区到自习区的距离作为影响学生满意度的因素。问题三,由于临近期末,上自习的人数突然增多,原有教室即使全部开放也不能在满足同学们满意度的同时,使99%的需要上自习的同学在自习室上自习,于是需要临时搭建教室,其仍然属于多目标规划的数学问题。.三 模型假设1、 如果哪个教室被开放,则假设此教室的所有灯管全部打开并且灯管都能正常使用;2、 假设每个同学是否上自习相互独立;3、 假设自习室每天晚上从开放;4、 假设学生从宿舍区到一个自习区的距离与到自习区任何教室的距离相同;5、 假设各宿舍区可入住的学生人数相同;6、 假设学生在开始自习前所行走的距离为影响其满意度的主导因素,但在等距离的前提下,学生在选择自习室时折返选择次数越多,满意度越低。.四 符号说明符号变量符号含义该校学生总数该校教室总数学生上自习的可能性需要上自习的同学满意程度号开放教室的满座率号教室的座位数号教室的灯管数号教室每只灯管的功率.五 模型建立和求解5.1.问题15.1.1模型一的建立问题中陈述每位同学上自习的可能性为0.7,即;要求使需要上自习的同学的满意程度不低于95%,则;要求开放的教室满座率不低于4/5,同时尽量不超过90%,则。优化目标为合理安排教室开放,以达到节约用电的目的。此问题中假设当时,学生满意程度不低于95%。根据上述要求及目标,建立模型一。令该学校的学生人数为8000人,教室总数为45,每位同学上自习的可能性为,则每晚上自习的学生总数为;每个同学可以在开放的教室中自由选择上自习的教室,则在号教室上自习的学生人数为,每晚在各个教室上自习的学生总数为。由于两个总人数均为每晚上自习的学生总数,因此二者应相等。于是建立如下优化模型:目标函数:5.1.2模型一的求解用Lingo软件对模型一进行求解(程序见附录)。得到每晚最少用电237.9870kwh,教室开放方案如下:表1.2.1教室开放方案Z( 1)0Z( 10)1Z( 19)1Z( 28)1Z( 37)1Z( 2)0Z( 11)1Z( 20)1Z( 29)1Z( 38)1Z( 3)1Z( 12)1Z( 21)1Z( 30)1Z( 39)1Z( 4)1Z( 13)1Z( 22)1Z( 31)1Z( 40)1Z( 5)1Z( 14)1Z( 23)1Z( 32)1Z( 41)1Z( 6)1Z( 15)0Z( 24)1Z( 33)1Z( 42)1Z( 7)0Z( 16)0Z( 25)1Z( 34)1Z( 43)1Z( 8)1Z( 17)1Z( 26)1Z( 35)1Z( 44)0Z( 9)1Z( 18)1Z( 27)1Z( 36)1Z( 45)0由上表可知,每晚开放的教室编号为3、4、5、6、8、9、10、11、12、13、14、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43,共38个教室。每晚最少用电237.9870kwh。5.2问题25.2.1问题分析问题2是在问题一的基础上将宿舍划分为10个宿舍区,将现有的45个教室划分为9个自习区,且各宿舍区到各自习区的距离不等,而学生的满意程度又与两区间的距离紧密相关。假设某宿舍区的同学上自习的满意程度不仅取决于自己所在宿舍区到各自习区的距离,还会受到其它宿舍区到自习区距离的影响,如某同学所在宿舍区到距其最近的自习区的距离为,而另一同学所在宿舍区到距其最近的自习区的距离为,若,则第一个同学受第二个同学的影响,其满意程度较单独考虑是会有所降低。基于以上分析,我们从全局的角度考虑,将宿舍区到自习区的所有距离进行分析,找出最近和最远距离,最终确定合理的满意度的度量标准。此问题中,我们依旧假设,当开放的教室的满座率满足时,学生对教室人数的满意度最高,此时可只考虑宿舍区到自习区的距离作为影响学生满意度的因素。5.2.2数据处理对学生区到自习区距离表的数据进行处理,得到最短距离为305,最长距离为696。距离差,于是我们可将学生的满意程度按距离划分为4个等级,如下表2.2.1:表 2.2.1 学生满意程度等级宿舍区到自习区的距离学生满意程度100%95%90%85%由于各宿舍区入住学生人数相同,则每个宿舍区入住学生人数为人。学生上自习的可能为,则每个宿舍区每晚可能上自习的学生人数为人。我们要求学生满意程度最好不低于%90,根据宿舍区和自习区的距离关数据,得到各宿舍区学生选择自习区的先后顺序,如下表2.2.2:表 2.2.2 各宿舍区学生选择自习区的次序宿舍区自习区选择次序A1B2B9B1B4B7B5B8B6B3A2B7B5B3B6B4B8B2B9B1A3B3B4B7B1B8B2B6B5B9A4B7B3B1B5B4B2B8B6B9A5B5B7B3B4B6B9B2B8B1A6B7B3B1B4B9B6B2B8B5A7B9B8B1B2B5B7B6B3B4A8B2B9B6B5B1B3B8B7B4A9B1B4B9B2B5B3B6B8B7A10B4B3B2B1B8B9B5B6B7规定学生选择自习区时,按其选择次序依次进行,所有学生最高优先选择级选择完后方可进行第二优先级的选择。如,A2,A4,A6宿舍区的学生在选择自习区时,均会优先选择B7区,而B7区的教室座位数小于三个区的自习总人数,则必有部分学生只能选择满意度较低的下一优先级的自习区B5,B3,B3。而B5,B3区作为A5,A3的第一级优先选择区,已被学生选择,则在B7区无法自习的学生只能在A5,A3区满座率低于90%的教室自习,若仍有部分学生无法自习,则选择第三优先级自习区进行自习,分析类似,依此类推直到找到合适的教室为止。根据上述需要,做各自习区教室总座位数的表格2.2.3。表 2.2.3 各自习区总座位数总座位数容纳人数下限容纳人数上限B1666532.8599.4B2590472531B3781624.8702.9B4720576648B5580464522B61051840.8707.4B7786628.8707.4B81000800900B96705366035.2.3模型二的阐述5.2.3.1第一级优先选择对B1区:A9区的学生优先选择。教室开放方案如下:表 2.3.1.1 B1区教室开放方案Z(1)Z(2)Z(3)Z(4)Z(5)11111由上表可知,B1区教室开放方案为全部开放。B1区各教室入座情况统计如下:表 2.3.1.2 B1区各教室入座情况教室总座位数容纳人数上限实际入座人数还可容纳人数B1-16457.651.26.4B1-28879.279.20B1-3193173.7172.80.9B1-4193173.7154.419.3B1-5128115.2102.412.8 由上表可知,B1区开放的教室还可容纳学生39.4人,所有教室共仍可容纳学生39.4人。对B2区:A1,A8区的学生优先选择。两区上自习总人数为1120人,而B2区容纳人数上限为531人,则有589人无法入座。由于两区学生能否入座是等可能的,则认为A1,A8区均有294.5人无法入座。B2区教室开放方案为全部开放。对B3区:A3区的学生优先选择。教室开放方案如下:表 2.3.1. 2 B3区教室开放方案Z(11)Z(12)Z(13)Z(14)Z(15)01110由上表可知,B3区每晚开放的教室编号为12、13、14,共3个教室。B3区各教室入座情况统计如下:表 2.3.1. 3 B3区各教室入座情况教室总座位数容纳人数上限实际入座人数还可容纳人数B3-116457.6057.6B3-12247222.320022.3B3-131901711710B3-142101891890B3-157063056由上表可知,B3区开放的教室还可容纳学生22.3人,所有教室共仍可容纳学生135.9人。对B4区:A10区的学生优先选择。教室开放方案如下:表 0.4 B4区教室开放方案Z(16)Z(17)Z(18)Z(19)Z(20)01111由上表可知,B4区每晚开放的教室编号为17、18、19、20,共4个教室。B4区各教室入座情况统计如下:表 0.5 B4区各教室入座情况教室总座位数容纳人数上限实际入座人数还可容纳人数B4-168576.5076.5B4-17192172.8161.311.5B4-18195175.5175.50B4-19128115.2115.20B4-201201081080由上表可知,B4区开放的教室还可容纳学生11.5人,所有教室共仍可容纳学生88人。对B5区:A5区的学生优先选择。A5区上自习总人数为560人,而B5区容纳人数上限为522人,则有38人无法入座。B5区教室开放方案为全部开放。对B6区:无宿舍区的学生对其优先选择。对B7区:A2,A4,A6区的学生优先选择。三区上自习总人数为1680人,而B7区容纳人数上限为707.4人,则有972.6人无法入座。由于三区学生能否入座是等可能的,则认为A2,A4,A6区均有324.2人无法入座。B7区教室开放方案为全部开放。对B8区:无宿舍区的学生对其优先选择。对B9区:A7区的学生优先选择。教室开放方案如下:表 0.6 B9区教室开放方案Z(41)Z(42)Z(43)Z(44)Z(45)11111由上表可知,B9区教室开放方案为全部开放。B9区各教室入座情况统计如下:表 0.7 B9区各教室入座情况教室总座位数容纳人数上限实际入座人数还可容纳人数B9-4115013512015B9-421501351350B9-431801621539B9-447063567B9-451201089612由上表可知,B9区开放的教室还可容纳学生43人,所有教室共仍可容纳学生43人。经过第一级优先选择后,各教室开放情况如下:表 0.8 第一级优先选择后,各教室开放情况Z( 1)1Z( 10)1Z( 19)1Z( 28)0Z( 37)0Z( 2)1Z( 11)0Z( 20)1Z( 29)0Z( 38)0Z( 3)1Z( 12)1Z( 21)1Z( 30)0Z( 39)0Z( 4)1Z( 13)1Z( 22)1Z( 31)1Z( 40)0Z( 5)1Z( 14)1Z( 23)1Z( 32)1Z( 41)1Z( 6)1Z( 15)0Z( 24)1Z( 33)1Z( 42)1Z( 7)1Z( 16)0Z( 25)1Z( 34)1Z( 43)1Z( 8)1Z( 17)1Z( 26)0Z( 35)1Z( 44)1Z( 9)1Z( 18)1Z( 27)0Z( 36)0Z( 45)1由上表可知,经过第一级优先选择后,开放教室的编号为1、2、3、4、5、6、7、8、9、10、12、13、14、17、18、19、20、21、22、23、24、25、31、32、33、34、35、41、42、43、44、45,共32个教室。5.2.3.2第二级优先选择对于经过第一级优先选择后无法入座的同学进行第二级优先选择。第二级优先选择时,为保证学生满意度,可按需开放第一级优先选择时未开放的教室。表 0.9 未入座宿舍区同学对自习区的第二级优先选择宿舍区A1A2A4A5A6A8自习区B9B5B3B7B3B9对于B3区:A4,A6区的同学第二级优先选择。经过第一级优先选择后,A4,A6区未能入座的学生人数均为324.2人,总数为648.4人,由表2.3.4可知,B3区开放的教室还可容纳学生22.3人,所有教室共仍可容纳学生135.9人。此时,我们开放B3区的所有教室,经过第二级优先选择后,A4,A6区未能入座的学生总数为512.5人,即A4,A6区均有256.25人无法入座。对于B5区:A2区的同学第二级优先选择。经过第一级优先选择后,A2区未能入座的学生人数为324.2人。而经过第一级优先选择后,B5区已无法再容纳学生,因此,经过第二级优先选择后,A2区未能入座的学生人数为324.2人。对于B7区:A5区同学第二级优先选择。经过第一级优先选择后,A5区未能入座的学生人数为38人。而经过第一级优先选择后,B7区已无法再容纳学生,因此,经过第二级优先选择后,A5区未能入座的学生人数为38人。对于B9区:A1,A8区的同学第二级优先选择。经过第一级优先选择后,A1,A8区未能入座的学生人数均为294.5人,总数为589人,由表2.3.8可知,B9区开放的教室还可容纳学生43人,所有教室共仍可容纳学生43人。此时, B9区的所有教室已经全部开放,经过第二级优先选择后,A1,A8区未能入座的学生总数为546人,即A1,A8区均有273人无法入座。经过第二级优先选择后,各教室开放情况如下:0.10 第二级优先选择后,各教室开放情况Z( 1)1Z( 10)1Z( 19)1Z( 28)0Z( 37)0Z( 2)1Z( 11)1Z( 20)1Z( 29)0Z( 38)0Z( 3)1Z( 12)1Z( 21)1Z( 30)0Z( 39)0Z( 4)1Z( 13)1Z( 22)1Z( 31)1Z( 40)0Z( 5)1Z( 14)1Z( 23)1Z( 32)1Z( 41)1Z( 6)1Z( 15)1Z( 24)1Z( 33)1Z( 42)1Z( 7)1Z( 16)0Z( 25)1Z( 34)1Z( 43)1Z( 8)1Z( 17)1Z( 26)0Z( 35)1Z( 44)1Z( 9)1Z( 18)1Z( 27)0Z( 36)0Z( 45)1由上表可知,经过第二级优先选择后,开放教室的编号为1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、17、18、19、20、21、22、23、24、25、31、32、33、34、35、41、42、43、44、45,共34个教室。5.2.3.3第三级优先选择对于经过第二级优先选择后无法入座的同学进行第三级优先选择。第三级优先选择时,为保证学生满意度,可按需开放第二级优先选择时未开放的教室。表0.11 未入座宿舍区同学对自习区的第三级优先选择宿舍区A1A2A4A5A6A8自习区B1B3B1B3B1B6对于B1区:A1,A4,A6区的同学第三级优先选择。经过第二级优先选择后,A1区未能入座的学生人数为273人,A4,A6区未能入座的学生人数均为256.25人,总数为785.5人,由表2.3.2可知,B1区开放的教室还可容纳学生39.4人,所有教室共仍可容纳学生39.4人。此时,B1区的所有教室已全部开放,则经过第三级优先选择后,A1区未能入座的学生人数为259.87人,A4,A6区未能入座的学生人数均为243.12人。对于B3区:A2,A5区的同学第三级优先选择。经过第二级优先选择后,B3区已不能再容纳学生,则则经过第三级优先选择后,A2区未能入座的学生人数为324.2人,A5区未能入座的学生人数为38人。对于B6区:A8区的同学第三级优先选择。经过第二级优先选择后,A8区未能入座的学生人数为273人,而B6区还没有教室开放,则根据模型一确定B6区开放的教室。由于A8区未能入座的学生在选择教室时无法满足,则暂时不对其进行分配。经过第三级优先选择后,各教室开放情况同表2.3.11。5.2.3.4第四级优先选择对于经过第三级优先选择后无法入座的同学进行第四级优先选择。第四级优先选择时,为保证学生满意度,可按需开放第三级优先选择时未开放的教室。表0.12 未入座宿舍区同学对自习区的第四级优先选择宿舍区A1A2A4A5A6自习区B4B6B5B4B4对于B4区:A1,A5,A6区的同学第四级优先选择。经过第三级优先选择后,A1区未能入座的学生人数为259.87人,A5区未能入座的学生人数为38人,A6区未能入座的学生人数为243.12人。由表 0.5可知,B4区开放的教室还可容纳学生11.5人,所有教室共仍可容纳学生88人。此时,我们开放B4区的所有教室,经过第四级优先选择后,A1区未能入座的学生人数为230.57人,A5区未能入座的学生人数为8.7人,A6区未能入座的学生人数为213.82人。对于B5区:A4区的同学第四级优先选择。经过第三级选择后,A4区未能入座的的学生人数为243.12人,而B5区在经过第一级优先选择后,就无法在容纳学生。因此,经过第四级选择后,A4区未能入座的的学生人数为243.12人。对于B6区:A2区的同学第四级优先选择。经过第三级选择后,A2区未能入座的的学生人数为324.2人,在第三级优先选择时A8区未能入座的273人也可选择B6区,因此选择B6区的总人数为597.3人。根据模型一确定B6区开放的教室。教室开放方案如下:表0.13 B6区教室开放方案Z(26)Z(27)Z(28)Z(29)Z(30)10101由上表可知,B6区每晚开放的教室编号为26、28、30,共三个教室。B6区各教室入座情况统计如下:表0.14 B6区各教室入座情况教室总座位数容纳人数上限实际入座人数还可容纳人数B6-26256230.4223.86.6B6-271901710171B6-282101891890B6-291901710171B6-30205184.5184.50由上表可知,B6区开放的教室还可容纳学生6.6人,所有教室共仍可容纳学生348.6人。经过第四级优先选择后,各教室开放情况如下:表0.15 四级优先选择后,各教室开放情况Z( 1)1Z( 10)1Z( 19)1Z( 28)1Z( 37)0Z( 2)1Z( 11)1Z( 20)1Z( 29)0Z( 38)0Z( 3)1Z( 12)1Z( 21)1Z( 30)1Z( 39)0Z( 4)1Z( 13)1Z( 22)1Z( 31)1Z( 40)0Z( 5)1Z( 14)1Z( 23)1Z( 32)1Z( 41)1Z( 6)1Z( 15)1Z( 24)1Z( 33)1Z( 42)1Z( 7)1Z( 16)1Z( 25)1Z( 34)1Z( 43)1Z( 8)1Z( 17)1Z( 26)1Z( 35)1Z( 44)1Z( 9)1Z( 18)1Z( 27)0Z( 36)0Z( 45)1由上表可知,经过第四级优先选择后,开放教室的编号为1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、28、30、31、32、33、34、35、41、42、43、44、45,共38个教室。5.2.3.5第五级优先选择对于经过第四级优先选择后无法入座的同学进行第五级优先选择。第五级优先选择时,为保证学生满意度,可按需开放第四级优先选择时未开放的教室。表0.16 未入座宿舍区同学对自习区的第五级优先选择宿舍区A1A4A5A6自习区B7B4B6B9对于B6,B7,B9区,已无法再容纳学生,则经过第五级优先选择后,A1区未能入座的学生人数为230.57人,A4区未能入座的学生人数为243.12人,A6区未能入座的学生人数为213.82人。对于B6区:A5区的同学第五级优先选择。 经过第四级优先选择,A5区未能入座的学生人数为8.7人,由表2.3.15知,B6区开放的教室还可容纳学生6.6人,所有教室共仍可容纳学生348.6人。为了节约用电,我们不为少数的几个人另开教室,则将B6区开放的教室坐满,此时经过第五级优先选择后,A5区未能入座的学生人数为2.1人。经过第五级优先选择后,各教室开放情况同表2.3.16。5.2.3.6第六级优先选择对于经过第五级优先选择后无法入座的同学进行第六级优先选择。第六级优先选择时,为保证学生满意度,可按需开放第五级优先选择时未开放的教室。0.17 未入座宿舍区同学对自习区的第六级优先选择宿舍区A1A4A5A6自习区B5B2B9B6对于B2,B5,B9区,已无法再容纳学生,因此经过第六级优先选择后A1区未能入座的学生人数为230.57人,A4区未能入座的学生人数为243.12人,A5区未能入座的学生人数为2.1人。对于B6区:A6区同学第六级优先选择。经过第五级优先选择后,A6区未能入座的学生人数为213.82人,加之第五级优先选择时A5区由于B6区未另外开放教室而未能入座的学生共215.92人。由表2.3.15知,B6区的27,29号教室都还可容纳学生171人,213.82人大于一间教室容纳人数的上限,小于两间教室容纳人数下限之和,为了节约用电,暂不做安排。经过第六级优先选择后,各教室开放情况同表2.3.16。5.2.3.7第七级优先选择对于经过第六级优先选择后无法入座的同学进行第气级优先选择。第七级优先选择时,为保证学生满意度,可按需开放第六级优先选择时未开放的教室。0.18 未入座宿舍区同学对自习区的第六级优先选择宿舍区A1A4A5A6自习区B8B8B2B2对于B2区,已无法再容纳学生,因此经过第七级优先选择后A5区未能入座的学生人数为2.1人,A6区未能入座的学生人数为213.82人。对于B8区:A1,A4区的同学第七级优先选择。经过第六级优先选择后,A1区未能入座的学生人数为230.57人,A4区未能入座的学生人数为243.12人,而此时B8区还没有教室开放,因此按照模型一确定B8区开放的教室。开放教室方案如下:0.19 B8区教室开放方案Z(36)Z(37)Z(38)Z(39)Z(40)01101由上表可知,B8区每晚开放的教室编号为37、38、40,共三个教室。B8区各教室入座情况统计如下:0.20 B8区各教室入座情况教室总座位数容纳人数上限实际入座人数还可容纳人数B8-362101890189B8-3719017115219B8-3819017115219B8-392101890189B8-40200180169.6910.31由上表可知,B8区开放的教室还可容纳学生48.31人,所有教室共仍可容纳学生426.31人。此时A5,A6区未能入座的学生只能选择B6,B8区,兼顾学生满意度和节约用电原则,我们开放一间B6区教室,其他无法入座学生在B8区已开放的教室入座。27、29号教室规格完全一样,选择开放27号教室,并让A5区学生全部入座,剩下的座位给A6区学生。则此时A6区有44.92名学生无法入座,人数小于B8区开放的教室还可容纳学生48.31人,则可将其安置在这些教室中。经过第七级优先选择后,各教室开放情况如下:0.21 级优先选择后,各教室开放情况Z( 1)1Z( 10)1Z( 19)1Z( 28)1Z( 37)1Z( 2)1Z( 11)1Z( 20)1Z( 29)0Z( 38)1Z( 3)1Z( 12)1Z( 21)1Z( 30)1Z( 39)0Z( 4)1Z( 13)1Z( 22)1Z( 31)1Z( 40)1Z( 5)1Z( 14)1Z( 23)1Z( 32)1Z( 41)1Z( 6)1Z( 15)1Z( 24)1Z( 33)1Z( 42)1Z( 7)1Z( 16)1Z( 25)1Z( 34)1Z( 43)1Z( 8)1Z( 17)1Z( 26)1Z( 35)1Z( 44)1Z( 9)1Z( 18)1Z( 27)1Z( 36)0Z( 45)1由上表可知,经过第七级优先选择后,开放教室的编号为1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、30、31、32、33、34、35、37、38、40、41、42、43、44、45,共42个教室。5.2.4模型求解开放教室方案为:每晚开放的教室编号1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、30、31、32、33、34、35、37、38、40、41、42、43、44、45,共42个教室。 考虑到学生每折返更换一次教室,满意度会降低,规定折返一次满意度降低1%,最后计算满意度时,先根据所选自习区确定其满意度,在此基础上减去因折返选择教室满意度降低的累积值,即可计算出学生最终的满意度。考虑到实际情况,当完成第四级优先选择后,除 B6,B8区还没有学生入座,其余自习区已无法再容纳学生,而学生经历了四次选择后必然想尽快找到自习室入座,因此会打乱原来的选择次序,直接跳到B6或B8区。对于A1区(见图1):265.5人在第一级优先选择时入座B2区,满意度为;21.5人在第二级优先选择时入座B9区,满意度为;13.13人在第三级优先选择时入座B1区,满意度为;29.3人在第四级优先选择时入座B4区,满意度为;230.57人在第五级优先选择时入座B8区,满意度为。图1:A1区各级优先选择满意度对于A2区(见图2):235.8人在第一级优先选择时入座B7区,满意度为;324.2人在第四级优先选择时入座B6区,满意度为。图2:A2区各级优先选择满意度对于A3区(见图3):560人在第一级优先选择时入座B3区,满意度为。图3:A3区各级优先选择满意度对于A4区(见图4):235.8人在第一级优先选择时入座B7区,满意度为;67.95人在第二级优先选择时入座B3区,满意度为;13.13人在第三级优先选择时入座B1区,满意度为;243.12人在第五级优先选择时入座B8区,满意度为;图4:A4区各级优先选择满意度对于A5区(见图5): 522人在第一级优先选择时入座B5区,满意度为;29.3人在第四级优先选择时入座B4区,满意度为;8.7人在第五级优先选择时入座B6区,满意度为;图5:A5区各级优先选择满意度对于A6区(见图6):235.8人在第一级优先选择时入座B7区,满意度为;67.95人在第二级优先选择时入座B3区,满意度为;13.13人在第三级优先选择时入座B1区,满意度为;29.3人在第四级优先选择时入座B4区,满意度为;168.9人在第五级优先选择时入座B6区,满意度为;44.92人在第六级优先选择时入座B8区,满意度为;图6:A6区各级优先选择满意度对于A7区(见图7):560人在第一级优先选择时入座B9区,满意度为。图7:A7区各级优先选择满意度对于A8区(见图8):265.5人在第一级优先选择时入座B2区,满意度为;21.5人在第二级优先选择时入座B9区,满意度为;273人在第三级优先选择时入座B6区,满意度为;图8:A8区各级优先选择满意度对于A9区(见图9):560人在第一级优先选择时入座B1区,满意度为。图9:A9区各级优先选择满意度对于A10区(见图10): 560人在第一级优先选择时入座B4区,满意度为。图10:A10区各级优先选择满意度全校学生满意度人数分布见下表:0.1 全校学生满意度人数分布满意度人数4439.91694.45177.6288.04所占比例79.29%12.40%3.17%5.14%由上表可知,满意度达到90%以上的学生人数所占的比例为91.69%,因此教室的开放方案基本满足大多数人的需要。 每晚自习教室总的用电量为:251.649kwh。5.3问题三5.3.1问题分析 问题三是在问题二基础上的改进。表现在如下四个方面:a. 每个同学上自习的可能性增大为0.85;b. 需要上自习的同学满意度要求更高,不低于99%;c. 教室的满座率的限制改变为;d. 可根据需要在任意自习区搭建一个与该区某教室规格相同的临时教室。由于满意度要求变高,因此在问题二满意度等级划分的基础上(见表2.2.1),假设学生折返选择自习室的次数不超过3次,则认为对其总体的满意度不构成影响;若超过3次,超过的部分按每次满意度降低1%计算。假设临近期末时,学生为了抓紧时间,若三次都未找到合适的教室,则第四次直接去距其较远的B6或B8区。5.3.2数据处理由于每个同学上自习的可能性增大为0.85,总人数没变,因此各宿舍区可能上自习的人数增加到680人。由于教室的满座率的限制改变为,则各自习区的总座位数和可容纳人数见下表:0.1 各自习区的总座位数和可容纳人数总座位数容纳人数下限容纳人数上限B1666532.8632.7B2590472590B3781624.8781B4720576684B5580464551B61051840.8998.45B7786628.8746.7B81000800950B9670536636.5各宿舍区学生选择自习区的次序表同问题二(见表2.2.2)。5.3.3模型三的阐述5.3.3.1第一级优先选择对于B1区:A9区的同学第一级优先选择。B1区容纳人数上限为632.7人,A9区上自习人数为680人,考虑到A1,A4,A6区学生的第三级优先选择为B1区,不妨在B1区搭建一个规格和4号教室相同的临时教室,此时B1区容纳人数上限为816.05人,A9区学生全部入座后还可容纳136.05人。对于B2区:A1,A8区的学生第一级优先选择。 B2区容纳人数上限为590人,A1,A8区上自习总人数为1360人,供小于求,在B2区搭建一个规格和10号教室相同的临时教室,此时B2区容纳人数上限为704人,仍然不能满足需求,则经过第一级优先选择后,A1,A8区均有328人无法入座。对于B3区:A3区的学生第一级优先选择
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 宁夏教育数学试卷
- 淘宝店铺直播活动策划方案(3篇)
- 河道栏杆基础施工方案(3篇)
- 澳门废气处理施工方案(3篇)
- 临时保安考试题库及答案
- 北京市门头沟区2023-2024学年八年级下学期第一次月考语文考点及答案
- 安徽省宿州市灵璧县2024-2025学年高一上学期期末考试历史试卷及答案
- 放鞭炮初一作文700字14篇
- 客户服务热线接听规范及问题解决流程模板
- 时政知识培训方案策划课件
- GB/T 19851.12-2025中小学体育器材和场地第12部分:学生体质健康测试器材
- 公安科技信息化课件
- 2025年医疗器械经营企业法律法规培训考试(含答案)
- 医院安保课件
- 文印员考试题库及答案
- 2025年涂料行业研究报告及未来发展趋势预测
- 2025年部编版新教材语文九年级上册教学计划(含进度表)
- 2025河北唐山某国有企业单位招聘劳务派遣工作人员44人笔试参考题库附带答案详解(10套)
- 2025年云南省中考数学真题含答案
- 留疆战士考试题库及答案
- 班主任与家长沟通课件
评论
0/150
提交评论