




免费预览已结束,剩余16页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省武汉为明实验学校2012年全国各地中考数学压轴题汇编三(含详细答案)【31. 2012娄底】24已知二次函数y=x2(m22)x2m的图象与x轴交于点a(x1,0)和点b(x2,0),x1x2,与y轴交于点c,且满足(1)求这个二次函数的解析式;(2)探究:在直线y=x+3上是否存在一点p,使四边形pacb为平行四边形?如果有,求出点p的坐标;如果没有,请说明理由考点:二次函数综合题。分析:(1)欲求抛物线的解析式,关键是求得m的值根据题中所给关系式,利用一元二次方程根与系数的关系,可以求得m的值,从而问题得到解决注意:解答中求得两个m的值,需要进行检验,把不符合题意的m值舍去;(2)利用平行四边形的性质构造全等三角形,根据全等关系求得p点的纵坐标,进而得到p点的横坐标,从而求得p点坐标解答:解:(1)二次函数y=x2(m22)x2m的图象与x轴交于点a(x1,0)和点b(x2,0),x1x2,令y=0,即x2(m22)x2m=0 ,则有:x1+x2=m22,x1x2=2m=,化简得到:m2+m2=0,解得m1=2,m2=1当m=2时,方程为:x22x+4=0,其判别式=b24ac=120,此时抛物线与x轴没有交点,不符合题意,舍去;当m=1时,方程为:x2+x2=0,其判别式=b24ac=90,此时抛物线与x轴有两个不同的交点,符合题意m=1,抛物线的解析式为y=x2+x2(2)假设在直线y=x+3上是否存在一点p,使四边形pacb为平行四边形如图所示,连接papbacbc,过点p作pdx轴于d点抛物线y=x2+x2与x轴交于ab两点,与y轴交于c点,a(2,0),b(1,0),c(0,2),ob=1,oc=2pacb为平行四边形,pabc,pa=bc,pad=cbo,apd=ocb在rtpad与rtcbo中,rtpadrtcbo,pd=oc=2,即yp=2,直线解析式为y=x+3,xp=1,p(1,2)所以在直线y=x+3上存在一点p,使四边形pacb为平行四边形,p点坐标为(1,2)点评:本题是代数几何综合题,考查了二次函数的图象与性质、抛物线与x轴的交点、一元二次方程根的解法及根与系数关系、一次函数、平行四边形的性质以及全等三角形的判定与性质等方面的知识,涉及的考点较多,有一定的难度【32. 2012福州】22(满分14分)如图,已知抛物线yax2bx(a0)经过a(3,0)、b(4,4)两点(1) 求抛物线的解析式;(2) 将直线ob向下平移m个单位长度后,得到的直线与抛物线只有一个公共点d,求m的值及点d的坐标;(3) 如图,若点n在抛物线上,且nboabo,则在(2)的条件下,求出所有满足podnob的点p的坐标(点p、o、d分别与点n、o、b对应)考点:二次函数综合题分析:(1) 利用待定系数法求出二次函数解析式即可;(2) 根据已知条件可求出ob的解析式为yx,则向下平移m个单位长度后的解析式为:yxm由于抛物线与直线只有一个公共点,意味着联立解析式后得到的一元二次方程,其根的判别式等于0,由此可求出m的值和d点坐标;(3) 综合利用几何变换和相似关系求解方法一:翻折变换,将nob沿x轴翻折;方法二:旋转变换,将nob绕原点顺时针旋转90abdoxy第22题图abdoxy第22题图n特别注意求出p点坐标之后,该点关于直线yx的对称点也满足题意,即满足题意的p点有两个,避免漏解解答:解:(1) 抛物线yax2bx(a0)经过点a(3,0)、b(4,4) ,解得: 抛物线的解析式是yx23x (2) 设直线ob的解析式为yk1x,由点b(4,4),得:44k1,解得k11 直线ob的解析式为yx 直线ob向下平移m个单位长度后的解析式为:yxm 点d在抛物线yx23x上 可设d(x,x23x)又点d在直线yxm上, x23x xm,即x24xm0 抛物线与直线只有一个公共点, 164m0,解得:m4此时x1x22,yx23x2, d点坐标为(2,2) (3) 直线ob的解析式为yx,且a(3,0), 点a关于直线ob的对称点a的坐标是(0,3)设直线ab的解析式为yk2x3,过点b(4,4), 4k234,解得:k2 直线ab的解析式是yx3 nboabo, 点n在直线ab上,daboxyn图1ap1n1p2b1 设点n(n,n3),又点n在抛物线yx23x上, n3n23n,解得:n1,n24(不合题意,会去), 点n的坐标为(,)方法一:如图1,将nob沿x轴翻折,得到n1ob1,则n1(,),b1(4,4), o、d、b1都在直线yx上 p1odnob, p1odn1ob1, , 点p1的坐标为(,)将op1d沿直线yx翻折,可得另一个满足条件的点p2(,)图2an2p1p2b2abdoxyn综上所述,点p的坐标是(,)或(,)方法二:如图2,将nob绕原点顺时针旋转90,得到n2ob2,则n2(,),b2(4,4), o、d、b2都在直线yx上 p1odnob, p1odn2ob2, , 点p1的坐标为(,)将op1d沿直线yx翻折,可得另一个满足条件的点p2(,)综上所述,点p的坐标是(,)或(,)点评:本题是基于二次函数的代数几何综合题,综合考查了待定系数法求抛物线解析式、一次函数(直线)的平移、一元二次方程根的判别式、翻折变换、旋转变换以及相似三角形等重要知识点本题将初中阶段重点代数、几何知识熔于一炉,难度很大,对学生能力要求极高,具有良好的区分度,是一道非常好的中考压轴题【33. 2012南昌】27如图,已知二次函数l1:y=x24x+3与x轴交于ab两点(点a在点b左边),与y轴交于点c(1)写出二次函数l1的开口方向、对称轴和顶点坐标;(2)研究二次函数l2:y=kx24kx+3k(k0)写出二次函数l2与二次函数l1有关图象的两条相同的性质;若直线y=8k与抛物线l2交于e、f两点,问线段ef的长度是否发生变化?如果不会,请求出ef的长度;如果会,请说明理由考点:二次函数综合题。专题:综合题。分析:(1)抛物线y=ax2+bx+c中:a的值决定了抛物线的开口方向,a0时,抛物线的开口向上;a0时,抛物线的开口向下抛物线的对称轴方程:x=;顶点坐标:(,)(2)新函数是由原函数的各项系数同时乘以k所得,因此从二次函数的图象与解析式的系数的关系入手进行分析联系直线和抛物线l2的解析式,先求出点e、f的坐标,进而可表示出ef的长,若该长度为定值,则线段ef的长不会发生变化解答:解:(1)抛物线y=x24x+3中,a=1、b=4、c=3;=2,=1;二次函数l1的开口向上,对称轴是直线x=2,顶点坐标(2,1)(2)二次函数l2与l1有关图象的两条相同的性质:对称轴为x=2或定点的横坐标为2,都经过a(1,0),b(3,0)两点;线段ef的长度不会发生变化直线y=8k与抛物线l2交于e、f两点,kx24kx+3k=8k,k0,x24x+3=8,解得:x1=1,x2=5,ef=x2x1=6,线段ef的长度不会发生变化点评:该题主要考查的是函数的基础知识,有:二次函数的性质、函数图象交点坐标的解法等,难度不大,但需要熟练掌握【34. 2012恩施州】24如图,已知抛物线y=x2+bx+c与一直线相交于a(1,0),c(2,3)两点,与y轴交于点n其顶点为d(1)抛物线及直线ac的函数关系式;(2)设点m(3,m),求使mn+md的值最小时m的值;(3)若抛物线的对称轴与直线ac相交于点b,e为直线ac上的任意一点,过点e作efbd交抛物线于点f,以b,d,e,f为顶点的四边形能否为平行四边形?若能,求点e的坐标;若不能,请说明理由;(4)若p是抛物线上位于直线ac上方的一个动点,求apc的面积的最大值考点:二次函数综合题。分析:(1)利用待定系数法求二次函数解析式、一次函数解析式;(2)根据两点之间线段最短作n点关于直线x=3的对称点n,当m(3,m)在直线dn上时,mn+md的值最小;(3)需要分类讨论:当点e在线段ac上时,点f在点e上方,则f(x,x+3)和当点e在线段ac(或ca)延长线上时,点f在点e下方,则f(x,x1),然后利用二次函数图象上点的坐标特征可以求得点e的坐标;(4)方法一:过点p作pqx轴交ac于点q;过点c作cgx轴于点g,如图1设q(x,x+1),则p(x,x2+2x+3)根据两点间的距离公式可以求得线段pq=x2+x+2;最后由图示以及三角形的面积公式知sapc=(x)2+,所以由二次函数的最值的求法可知apc的面积的最大值;方法二:过点p作pqx轴交ac于点q,交x轴于点h;过点c作cgx轴于点g,如图2设q(x,x+1),则p(x,x2+2x+3)根据图示以及三角形的面积公式知sapc=saph+s直角梯形phgcsagc=(x)2+,所以由二次函数的最值的求法可知apc的面积的最大值;解答:解:(1)由抛物线y=x2+bx+c过点a(1,0)及c(2,3)得,解得,故抛物线为y=x2+2x+3又设直线为y=kx+n过点a(1,0)及c(2,3)得,解得故直线ac为y=x+1;(2)作n点关于直线x=3的对称点n,则n(6,3),由(1)得d(1,4),故直线dn的函数关系式为y=x+,当m(3,m)在直线dn上时,mn+md的值最小,则m=;(3)由(1)、(2)得d(1,4),b(1,2)点e在直线ac上,设e(x,x+1),当点e在线段ac上时,点f在点e上方,则f(x,x+3),f在抛物线上,x+3=x2+2x+3,解得,x=0或x=1(舍去)e(0,1);当点e在线段ac(或ca)延长线上时,点f在点e下方,则f(x,x1)由f在抛物线上x1=x2+2x+3解得x=或x=e(,)或(,)综上,满足条件的点e为e(0,1)、(,)或(,);(4)方法一:过点p作pqx轴交ac于点q;过点c作cgx轴于点g,如图1设q(x,x+1),则p(x,x2+2x+3)pq=(x2+2x+3)(x1)=x2+x+2又sapc=sapq+scpq=pqag=(x2+x+2)3=(x)2+面积的最大值为方法二:过点p作pqx轴交ac于点q,交x轴于点h;过点c作cgx轴于点g,如图2,设q(x,x+1),则p(x,x2+2x+3)又sapc=saph+s直角梯形phgcsagc=(x+1)(x2+2x+3)+(x2+2x+3+3)(2x)33=x2+x+3=(x)2+apc的面积的最大值为点评:本题考查了二次函数综合题解答(3)题时,要对点e所在的位置进行分类讨论,以防漏解【35. 2012兰州】28如图,rtabo的两直角边oa、ob分别在x轴的负半轴和y轴的正半轴上,o为坐标原点,a、b两点的坐标分别为(3,0)、(0,4),抛物线yx2bxc经过点b,且顶点在直线x上(1)求抛物线对应的函数关系式;(2)若把abo沿x轴向右平移得到dce,点a、b、o的对应点分别是d、c、e,当四边形abcd是菱形时,试判断点c和点d是否在该抛物线上,并说明理由;(3)在(2)的条件下,连接bd,已知对称轴上存在一点p使得pbd的周长最小,求出p点的坐标;(4)在(2)、(3)的条件下,若点m是线段ob上的一个动点(点m与点o、b不重合),过点m作bd交x轴于点n,连接pm、pn,设om的长为t,pmn的面积为s,求s和t的函数关系式,并写出自变量t的取值范围,s是否存在最大值?若存在,求出最大值和此时m点的坐标;若不存在,说明理由考点:二次函数综合题。分析:(1)根据抛物线y经过点b(0,4),以及顶点在直线x上,得出b,c即可;(2)根据菱形的性质得出c、d两点的坐标分别是(5,4)、(2,0),利用图象上点的性质得出x5或2时,y的值即可(3)首先设直线cd对应的函数关系式为ykxb,求出解析式,当x时,求出y即可;(4)利用mnbd,得出omnobd,进而得出,得到on,进而表示出pmn的面积,利用二次函数最值求出即可解答:解:(1)抛物线y经过点b(0,4)c4,顶点在直线x上,;所求函数关系式为;(2)在rtabo中,oa3,ob4,ab,四边形abcd是菱形,bccddaab5,c、d两点的坐标分别是(5,4)、(2,0),当x5时,y,当x2时,y,点c和点d都在所求抛物线上;(3)设cd与对称轴交于点p,则p为所求的点,设直线cd对应的函数关系式为ykxb,则,解得:,当x时,y,p(),(4)mnbd,omnobd,即得on,设对称轴交x于点f,则(pfom)of(t),(),s(),(0t4),s存在最大值由s(t)2,当s时,s取最大值是,此时,点m的坐标为(0,)点评:此题主要考查了二次函数的综合应用,以及菱形性质和待定系数法求解析式,求图形面积最值,利用二次函数的最值求出是解题关键【36. 2012南通】28(本小题满分14分)如图,经过点a(0,4)的抛物线yx2bxc与x轴相交于点b(0,0)和c,o为坐标原点(1)求抛物线的解析式;(2)将抛物线yx2bxc向上平移个单位长度、再向左平移m(m0)个单位长度,得到新抛物线若新抛物线的顶点p在abc内,求m的取值范围;(3)设点m在y轴上,omboabacb,求am的长 【考点】二次函数综合题【专题】分类讨论【分析】(1)该抛物线的解析式中只有两个待定系数,只需将a、b两点坐标代入即可得解(2)首先根据平移条件表示出移动后的函数解析式,进而用m表示出该函数的顶点坐标,将其代入直线ab、ac的解析式中,即可确定p在abc内时m的取值范围(3)先在oa上取点n,使得onb=acb,那么只需令nba=omb即可,显然在y轴的正负半轴上都有一个符合条件的m点;以y轴正半轴上的点m为例,先证abn、amb相似,然后通过相关比例线段求出am的长【解答】解:(1)将a(0,-4)、b(-2,0)代入抛物线y=x2+bx+c中,得: 0+c=-4 1 2 4-2b+c=0 ,解得: b=-1 c=-4 抛物线的解析式:y=x2-x-4(2)由题意,新抛物线的解析式可表示为:y=(x+m)2-(x+m)-4+7 2 ,即:y= x2+(m-1)x+1 2 m2-m-1 2 ;它的顶点坐标p:(1-m,-1);由(1)的抛物线解析式可得:c(4,0);那么直线ab:y=-2x-4;直线ac:y=x-4;当点p在直线ab上时,-2(1-m)-4=-1,解得:m=5 2 ;当点p在直线ac上时,(1-m)-4=-1,解得:m=-2;当点p在abc内时,-2m5 2 ;又m0,符合条件的m的取值范围:0m5 2 (3)由a(0,-4)、b(4,0)得:oa=oc=4,且oac是等腰直角三角形;如图,在oa上取on=ob=2,则onb=acb=45;onb=nba+oab=acb=omb+oab,即onb=omb;如图,在abn、am1b中,ban=m1ab,abn=am1b,abnam1b,得:ab2=anam1;易得:ab2=(-2)2+42=20,an=oa-on=4-2=2;am1=202=10,om1=am1-oa=10-4=6;而bm1a=bm2a=abn,om1=om2=6,am2=om2-oa=6-4=2综上,am的长为6或2【点评】考查了二次函数综合题,该函数综合题的难度较大,(3)题注意分类讨论,通过构建相似三角形是打开思路的关键所在【36. 2012常德】25、 如图11,已知二次函数的图像过点a(-4,3),b(4,4). (1)求二次函数的解析式: (2)求证:acb是直角三角形; (3)若点p在第二象限,且是抛物线上的一动点,过点p作ph垂直x轴于点h,是否存在以p、h、d、为顶点的三角形与abc相似?若存在,求出点p的坐标;若不存在,请说明理由。知识点考察:二次函数解析式的确定, 勾股定理及其逆定理的应用, 相似三角形的性质, 坐标系中点的坐标的特征, 抛物线与x轴的交点,一元二次方程的解法, 垂直的定义。 二元一次方程组的解法。 能力考察:观察能力,逻辑思维与推理能力,书写表达能力, 综合运用知识的能力,分类讨论的能力。动点的探求能力 准确的计算能力。 分析:求二次函数的解析式,也就是要求中a、b的值, 只要把a(-4,3),b(4,4)代人即可。 求证acb是直角三角形,只要求出ac,bc,ab的长度,然后用 勾股定理及其逆定理去考察。 是否存在以p、h、d、为顶点的三角形与abc相似?先要选择一点p 然后自p点作垂线构成rtphd,把两个三角形相似作条件,运用三角形 相似的性质去构建关于p点横坐标的方程。 解:(1)将a(-4,3),b(4,4)代人中,整理得: 解得 二次函数的解析式为: , 整理得: (2)由 整理 x1=-2 ,x2= c (-2,0) d 从而有:ac2=4+9 bc2=36+16 ac2+ bc2=13+52=65 ab2=64+1=65 ac2+ bc2=ab2 故acb是直角三角形 (3)设 (x0) ph= hd= ac= bc= 当phdacb时有: 即: 整理 (舍去)此时, 当dhpacb时有: 即: 整理 (舍去)此时, 综上所述,满足条件的点有两个即 点评:这是一个二次函数开放性的综合题,解决问题的思路容易建立,切入点也好找, 但运算难度较大。出题的老师看准了我们的学生在学习中存在的问题,那就是 每一个学生在计算时无论简单与复杂总是离不开计算器,所以遇到分数运算时 没有信心进行运算,最后还是放弃了。因此在这里要提醒每一位学生在平时计 算的练习中多用心算和笔算,才能提高自己的运算能力。【37. 2012荆门】24. 如图甲,四边形oabc的边oa、oc分别在x轴、y轴的正半轴上,顶点在b点的抛物线交x轴于点a、d,交y轴于点e,连接ab、ae、be已知tancbe=,a(3,0),d(1,0),e(0,3)(1)求抛物线的解析式及顶点b的坐标;(2)求证:cb是abe外接圆的切线;(3)试探究坐标轴上是否存在一点p,使以d、e、p为顶点的三角形与abe相似,若存在,直接写出点p的坐标;若不存在,请说明理由;(4)设aoe沿x轴正方向平移t个单位长度(0t3)时,aoe与abe重叠部分的面积为s,求s与t之间的函数关系式,并指出t的取值范围解:由题意,设抛物线解析式为y=a(x3)(x+1)将e(0,3)代入上式,解得:a=1y=x2+2x+3则点b(1,4)(2)证明:如图1,过点b作bmy于点m,则m(0,4)在rtaoe中,oa=oe=3,1=2=45,ae=3在rtemb中,em=omoe=1=bm,meb=mbe=45,be=bea=1801meb=90ab是abe外接圆的直径在rtabe中,tanbae=tancbe,bae=cbe在rtabe中,bae+3=90,cbe+3=90cba=90,即cbabcb是abe外接圆的切线(3)解:rtabe中,aeb=90,tanbae=,sinbae=,cosbae=;若以d、e、p为顶点的三角形与abe相似,则dep必为直角三角形;de为斜边时,p1在x轴上,此时p1与o重合;由d(1,0)、e(0,3),得od=1、oe=3,即tandeo=tanbae,即deo=bae满足deobae的条件,因此 o点是符合条件的p1点,坐标为(0,0)de为短直角边时,p2在x轴上;若以d、e、p为顶点的三角形与abe相似,则dep2=aeb=90,sindp2e=sinbae=;而de=,则dp2=desindp2e=10,op2=dp2od=9即:p2(9,0);de为长直角边时,点p3在y轴上;若以d、e、p为顶点的三角形与abe相似,则edp3=aeb=90,cosdep3=cosbae=;则ep3=decosdep3=,op3=ep3oe=;综上,得:p1(0,0),p2(9,0),p3(0,)(4)解:设直线ab的解析式为y=kx+b将a(3,0),b(1,4)代入,得解得y=2x+6过点e作射线efx轴交ab于点f,当y=3时,得x=,f(,3)情况一:如图2,当0t时,设aoe平移到dnm的位置,md交ab于点h,mn交ae于点g则on=ad=t,过点h作lkx轴于点k,交ef于点l由ahdfhm,得,即解得hk=2ts阴=smndsgnashad=33(3t)2t2t=t2+3t情况二:如图3,当t3时,设aoe平移到pqr的位置,pq交ab于点i,交ae于点v由iqaipf,得即,解得iq=2(3t)s阴=siqasvqa=(3t)2(3t)(3t)2=(3t)2=t23t+综上所述:s=【39. 2012黔东南州】24如图,已知抛物线经过点a(1,0)、b(3,0)、c(0,3)三点(1)求抛物线的解析式(2)点m是线段bc上的点(不与b,c重合),过m作mny轴交抛物线于n,若点m的横坐标为m,请用m的代数式表示mn的长(3)在(2)的条件下,连接nb、nc,是否存在m,使bnc的面积最大?若存在,求m的值;若不存在,说明理由解析:(1)设抛物线的解析式为:y=a(x+1)(x3),则:a(0+1)(03)=3,a=1;抛物线的解析式:y=(x+1)(x3)=x2+2x+3(2)设直线bc的解析式为:y=kx+b,则有:,解得;故直线bc的解析式:y=x+3已知点m的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年临沂莒南县教体系统部分事业单位公开招聘教师(1名)考前自测高频考点模拟试题及完整答案详解
- 2025贵州惠水县公益性岗位招聘4人考前自测高频考点模拟试题及答案详解(考点梳理)
- 2025包头市喜桂图文化旅游开发有限公司招聘讲解员15人模拟试卷及答案详解(易错题)
- 2025年温州市卫生健康委员会直属卫生健康单位面向社会公开招聘116人考前自测高频考点模拟试题及答案详解(名师系列)
- 2025北京昌平区统计局招聘经济运行监测工作专班助统员1人考前自测高频考点模拟试题及答案详解(新)
- 2025河南省蓝天实验室招聘工作人员20人考前自测高频考点模拟试题完整参考答案详解
- 2025湖北天门市城市社区专职工作人员招聘59人模拟试卷及答案详解一套
- 2025江苏苏州市自来水有限公司专业化青年人才定岗特选录用人员考前自测高频考点模拟试题及答案详解1套
- 2025年玉环市经济和化局公开选聘工作人员1人模拟试卷(含答案详解)
- 2025年中国三峡新能源(集团)股份有限公司春季校园招聘笔试题库历年考点版附带答案详解
- 川贝母培训课件
- QGDW11059.2-2018气体绝缘金属封闭开关设备局部放电带电测试技术现场应用导则第2部分特高频法
- 2025-2030年汽车模具行业市场发展分析及竞争格局与投资战略研究报告
- 2025年云南省中考语文试卷真题(含答案逐题解析)
- CJ/T 514-2018燃气输送用金属阀门
- CJ/T 244-2016游泳池水质标准
- 环保型氟硅橡胶鞋垫行业跨境出海项目商业计划书
- 智能语音识别技术原理与应用课件
- 签约红娘合作协议书
- 2025年公共营养师考试题及答案
- 2024年09月山东枣庄市妇幼保健院青年就业见习拟录用笔试历年专业考点(难、易错点)附带答案详解
评论
0/150
提交评论