16双曲线的标准方程.doc_第1页
16双曲线的标准方程.doc_第2页
16双曲线的标准方程.doc_第3页
16双曲线的标准方程.doc_第4页
16双曲线的标准方程.doc_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2.3.1双曲线的标准方程一、教学目标(一)知识与技能1.了解双曲线定义、焦点、焦距等基本概念;2.了解双曲线标准方程的两种形式及其推导过程; 3.会根据条件求双曲线的标准方程.(二)过程与方法通过对双曲线概念的引入教学,培养学生的观察能力和探索能力;通过对双曲线标准方程的推导,使学生进一步掌握求曲线方程的一般方法,提高学生运用坐标法解决几何问题的能力,并渗透数形结合和等价转化的数学思想方法.(三)情感态度与价值观通过对生活中的双曲线知识及数学实验探究激发学生的学习兴趣和创新意识,培养学生用联系的观点认识问题.二、教学重难点:三、教学过程:(一)创设情境,引入课题:情景一:问题引入:前面我们一起学习了椭圆,请同学们回忆一下椭圆的定义是什么?(请一位同学回答)如果把定义中距离的和改成距离的差那又变成了什么曲线了呢? 情景二:双曲线的几何画板演示 情景三:让同学们分组讨论总结出双曲线的定义,并思考定义中关键词是什么?(教师板书课题:双曲线及其标准方程)(3分钟后)根据讨论结果总结出:定义中的差的绝对值和常数小于两定点距离是关键词(切换幻灯片)(二)自学导案(三)解决自学导案(四)例题精析例1 判断下列方程是否表示双曲线,若是,求出三量的值 ()分析:双曲线标准方程的格式:平方差,项的系数是正的,那么焦点在轴上,项的分母是;项的系数是正的,那么焦点在轴上,项的分母是解:是双曲线, ; 是双曲线, ;是双曲线, ; 是双曲线, 例2已知双曲线两个焦点的坐标为,双曲线上一点P到的距离之差的绝对值等于8,求双曲线标准方程 解:因为双曲线的焦点在轴上,所以设它的标准方程为(,) 所求双曲线标准方程为 变式1:若|PF1|-|PF2|=6呢?变式2:若|PF1|-|PF2|=8呢?变式3:若|PF1|-|PF2|=10呢?例3 已知双曲线的焦点在y轴上,并且双曲线上两点P1、P2的坐标分别为(3,)、(),求双曲线的标准方程.解:因为双曲线的焦点在y轴上,所以设所求双曲线的标准方程为: (a0,b0) 因为点P1、P2在双曲线上,所以点P1、P2的坐标适合方程.将(3,)、()分别代入方程中,得方程组解得:a2=16,b2=9.故所求双曲线的标准方程为:例4 一炮弹在某处爆炸,在A处听到爆炸声的时间比在B处晚2 s.(1)爆炸点应在什么样的曲线上?(2)已知A、B两地相距800 m,并且此时声速为340 m/s,求曲线的方程.解(1)由声速及A、B两处听到爆炸声的时间差,可知A、B两处与爆炸点的距离的差,因此爆炸点应位于以A、B为焦点的双曲线上.因为爆炸点离A处比离B处更远,所以爆炸点应在靠近B处的一支上.(2)如图814,建立直角坐标系xOy,使A、B两点在x轴上,并且点O与线段AB的中点重合.设爆炸点P的坐标为(x,y),则即2a=680,a=340.又2c=800,c=400,b2=c2a2=44400.x0.所求双曲线的方程为: (x0).说明:例4表明,利用两个不同的观测点测得同一炮弹爆炸声的时间差,可以确定爆炸点所在的双曲线的方程,但不能确定爆炸点的准确位置.如果再增设一个观测点C,利用B、C(或A、C)两处测得的爆炸声的时间差,可以求出另一个双曲线的方程,解这两个方程组成的方程组,就能确定爆炸点的准确位置.这是双曲线的一个重要应用.例5、求下列动圆的圆心的轨迹方程: 与:内切,且过点; 与:和:都外切; 与:外切,且与:内切解题剖析:这表面上看是圆与圆相切的问题,实际上是双曲线的定义问题具体解:设动圆的半径为 与内切,点在外,因此有,点的轨迹是以、为焦点的双曲线的左支,即的轨迹方程是; 与、均外切,因此有,点的轨迹是以、为焦点的双曲线的上支,的轨迹方程是; 与外切,且M与内切,因此,点的轨迹是以、为焦点的双曲线的右支,的轨迹方程是课堂练习:1、求焦点的坐标是(-6,0)、(6,0),并且经过点A(-5,2)的双曲线的标准方程2、求经过点和,焦点在y轴上的双曲线的标准方程3、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论