




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
为您服务教育网/2012高考数学分类汇编-极坐标与参数方程1. (安徽13)在极坐标系中,圆的圆心到直线的距离是【解析】距离是 圆的圆心直线;点到直线的距离是2.北京9直线为参数)与曲线为参数)的交点个数为_。 【解析】直线的普通方程,圆的普通方程为,可以直线圆相交,故有2个交点。【答案】23.福建22.(2)(本小题满分7分)选修4-4:坐标系与参数方程在平面直角坐标系中,以坐标原点为几点,轴的正半轴为极轴建立极坐标系。已知直线上两点的极坐标分别为,圆的参数方程为参数)。()设为线段的中点,求直线的平面直角坐标方程;()判断直线与圆的位置关系。【解析】()由题意知,因为是线段中点,则因此直角坐标方程为:()因为直线上两点垂直平分线方程为:,圆心,半径.,故直线和圆相交.【考点定位】本题主要考查极坐标与参数方程的互化、圆的参数方程等基础知识,考查运算求解能力,考查转化化归思想。4.广东14.(坐标系与参数方程选做题) 在平面直角坐标系中,曲线和的参数方程分别为是参数) 和是参数),它们的交点坐标为_.【解析】它们的交点坐标为_ 解得:交点坐标为5.湖北16(选修4-4:坐标系与参数方程)在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系. 已知射线与曲线(t为参数)相交于A,B两点,则线段AB的中点的直角坐标为 .考点分析:本题考察平面直角坐标与极坐标系下的曲线方程交点.难易度:解析:在直角坐标系下的一般方程为,将参数方程(t为参数)转化为直角坐标系下的一般方程为表示一条抛物线,联立上面两个方程消去有,设两点及其中点的横坐标分别为,则有韦达定理,又由于点点在直线上,因此的中点.6.湖南9. 在直角坐标系xOy 中,已知曲线: (t为参数)与曲线 :(为参数,) 有一个公共点在X轴上,则.【答案】【解析】曲线:直角坐标方程为,与轴交点为;曲线 :直角坐标方程为,其与轴交点为,由,曲线与曲线有一个公共点在X轴上,知.【点评】本题考查直线的参数方程、椭圆的参数方程,考查等价转化的思想方法等.曲线与曲线的参数方程分别等价转化为直角坐标方程,找出与轴交点,即可求得.7.江苏C选修4 - 4:坐标系与参数方程 (2012年江苏省10分)在极坐标中,已知圆经过点,圆心为直线与极轴的交点,求圆的极坐标方程【答案】解:圆圆心为直线与极轴的交点,在中令,得。 圆的圆心坐标为(1,0)。 圆经过点,圆的半径为。 圆经过极点。圆的极坐标方程为。【考点】直线和圆的极坐标方程。【解析】根据圆圆心为直线与极轴的交点求出的圆心坐标;根据圆经过点求出圆的半径。从而得到圆的极坐标方程。8江西15.(1)(坐标系与参数方程选做题)曲线C的直角坐标方程为x2y2-2x=0,以原点为极点,x轴的正半轴为极轴建立积坐标系,则曲线C的极坐标方程为_。 15.(1)【解析】本题考查极坐标方程与直角坐标方程的互化及转化与化归的数学思想.由极坐标方程与直角坐标方程的互化公式得,又,所以.【点评】公式是极坐标与直角坐标的互化的有力武器.体现考纲中要求能进行坐标与直角坐标的互化.来年需要注意参数方程与直角坐标的互化,极坐标与直角坐标的互化等.9辽宁23. (本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系中,圆,圆(1)在以为极点,轴正半轴为极轴的极坐标系中,分别写出圆的极坐标方程,并求出圆的交点坐标(用极坐标表示)(2)求圆与圆的公共弦的参数方程【命题意图】本题主要考查圆的极坐标方程、直线的参数方程,是简单题.【解析】圆的极坐标方程为,圆的极坐标方程为,解得,故圆与圆交点的坐标为 5分注:极坐标系下点的表示不唯一(2)(解法一)由,得圆与圆交点的直角坐标为故圆与圆的公共弦的参数方程为(或参数方程写成) 10分(解法二)将代入,得,从而于是圆与圆的公共弦的参数方程为10陕西15.C(坐标系与参数方程)直线与圆相交的弦长为 【答案】【解析】是过点且垂直于极轴的直线, 是以为圆心,1为半径的圆,则弦长=.11上海10如图,在极坐标系中,过点的直线与极轴的夹角,若将的极坐标方程写成的形式,则 .【答案】【解析】根据该直线过点,可以直接写出代数形式的方程为:,将此化成极坐标系下的参数方程即可 ,化简得.【点评】本题主要考查极坐标系,本部分为选学内容,几乎年年都有所涉及,题目类型以小题为主,复习时,注意掌握基本规律和基础知识即可.对于不常见的曲线的参数方程不作要求.本题属于中档题,难度适中.12新课标(23)本小题满分10分)选修44;坐标系与参数方程已知曲线的参数方程是,以坐标原点为极点,轴的正半轴为极
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 无公害蔬菜保鲜创新创业项目商业计划书
- 智能点餐系统创新创业项目商业计划书
- 2025山东临沂市兰山区李官镇城镇公益性岗位招聘2人考试参考题库及答案解析
- 大豆环保涂料原料创新创业项目商业计划书
- 家庭艺术品保养与搬运创新创业项目商业计划书
- 海洋生物的发酵工艺创新创业项目商业计划书
- 智能采矿咨询服务平台创新创业项目商业计划书
- 家政线上线下融合创新创业项目商业计划书
- 智慧城市综合管理平台创新创业项目商业计划书
- 智能制造产学研联盟创新创业项目商业计划书
- “一带一路”倡议下的企业出海战略研究
- 体系管理知识培训课件
- 辽宁沈阳地铁有限公司所属公司招聘笔试题库完整参考答案详解
- 《新媒体营销与运营》-课程标准、授课计划
- 数字媒体技术认知实习
- 2025年秋季小学二年级上册语文教学计划及教学进度表
- 2025年海事两员从业资格考试(包装危险货物申报人员)历年参考题库含答案详解(5套)
- 新学期初二开学家长会课件
- 2025-2026学年外研版(2024)初中英语七年级上册(全册)教学设计(附目录)
- 消化内科临床科室发展规划与实施方案
- 空天飞机热管理系统-洞察及研究
评论
0/150
提交评论