



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课时分层作业(十九)奇偶性的概念(建议用时:60分钟)合格基础练一、选择题1设f(x)是定义在R上的奇函数,且当x0时,f(x)x2x,则f(1)()ABC. D.A因为f(x)是定义在R上的奇函数,所以f(1)f(1).2若函数f(x)(f(x)0)为奇函数,则必有()Af(x)f(x)0 Bf(x)f(x)0Cf(x)f(x)Bf(x)为奇函数,f(x)f(x),又f(x)0,f(x)f(x)f(x)20时,f(x)x21,则f(2)f(0)_.5由题意知f(2)f(2)(221)5,f(0)0,f(2)f(0)5.三、解答题9定义在3,11,3上的函数f(x)是奇函数,其部分图象如图所示(1)请在坐标系中补全函数f(x)的图象;(2)比较f(1)与f(3)的大小解(1)由于f(x)是奇函数,则其图象关于原点对称,其图象如图所示(2)观察图象,知f(3)f(1)10已知函数f(x)x,且f(1)3.(1)求m的值;(2)判断函数f(x)的奇偶性解(1)由题意知,f(1)1m3,m2.(2)由(1)知,f(x)x,x0.f(x)(x)f(x),函数f(x)为奇函数等级过关练1设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()Af(x)g(x)是偶函数 B|f(x)|g(x)是奇函数Cf(x)|g(x)|是奇函数 D|f(x)g(x)|是奇函数Cf(x)是奇函数,g(x)是偶函数,|f(x)|为偶函数,|g(x)|为偶函数再根据两个奇函数的积是偶函数、两个偶函数的积还是偶函数、一个奇函数与一个偶函数的积是奇函数,可得f(x)|g(x)|为奇函数,故选C.2已知f(x)x5ax3bx8(a,b是常数),且f(3)5,则f(3)()A21 B21C26 D26B设g(x)x5ax3bx,则g(x)为奇函数,由题设可得f(3)g(3)85,求得g(3)13.又g(x)为奇函数,所以g(3)g(3)13,于是f(3)g(3)813821.3设函数f(x)为奇函数,则a_.1f(x)为奇函数,f(x)f(x),即.显然x0,整理得x2(a1)xax2(a1)xa,故a10,得a1.4设奇函数f(x)的定义域为6,6,当x0,6时f(x)的图象如图所示,不等式f(x)0的解集用区间表示为_6,3)(0,3)由f(x)在0,6上的图象知,满足f(x)0的不等式的解集为(0,3)又f(x)为奇函数,图象关于原点对称,所以在6,0)上,不等式f(x)0的解集为6,3)综上可知,不等式f(x)0的解集为6,3)(0,3)5已知函数f(x)是奇函数,且f(1)3,f(2)5,求a,b,c的值解因为函数f(x)是奇函数,所以f(x)f(x),故,即,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农行理财考试题库及答案
- 2025年陪诊服务知识题库及答案
- 2025年财务分析师中级专业能力测试题库与答案解析
- 2025年陪诊师资格证考试题库(附答案)
- 2025年文化旅游部公务员招录考试专业知识精讲
- 2025年篮球裁判员测试题及答案
- 2025年酒店物业管理水电维修师笔试模拟试题集及答案解析
- 桡骨小头骨折课件
- 2025年城市设计与可持续发展考试试题及答案
- 2025年篮球教练职业技能认证考试试题及答案
- T/CNCA 048-2023矿用防爆永磁同步伺服电动机通用技术条件
- 微电网短期负荷预测-洞察阐释
- 安装家具合同协议书范本
- 月饼代销合同协议书
- 精神康复与躯体管理训练体系
- 购买肉牛合同协议书
- 移动式压力容器安全技术监察规程(TSG R0005-2011)
- JT-T 495-2025 公路交通安全设施产品质量检验抽样方法
- 《废旧锂电池的回收与再利用》课件
- 2025小学道德与法治教师课标考试模拟试卷附参考答案 (三套)
- 中国卒中患者高血压管理专家共识(2024)解读
评论
0/150
提交评论