车把(2#).dwg
车把(2#).dwg

小型自走式播种机设计(汽油机驱动)【17张CAD图纸+WORD毕业论文】【农业机械资料】

收藏

资源目录
跳过导航链接。
压缩包内文档预览:
预览图
编号:402331    类型:共享资源    大小:7.01MB    格式:RAR    上传时间:2015-01-29 上传人:好资料QQ****51605 IP属地:江苏
45
积分
关 键 词:
小型 播种机 设计 汽油机 驱动 全套 cad 图纸 word 毕业论文 农业机械 资料
资源描述:

【温馨提示】 购买原稿文件请充值后自助下载。

[全部文件] 那张截图中的文件为本资料所有内容,下载后即可获得。


预览截图请勿抄袭,原稿文件完整清晰,无水印,可编辑。

有疑问可以咨询QQ:414951605或1304139763

目录
第1章 前言··········································································1
1.1播种机的常识和技术现状·······················································1
1.2播种方式及常见播种类型·······················································3
1.2.1条播·············································································3
1.2.2穴播·············································································4
1.2.3撒播·············································································4
1.2.4精密播种·······································································4
1.2.5联合作业机和免耕播种························································5
1.3播种工作过程和机械构造·······················································5
1.3.1工作过程·······································································5
1.3.2机械构造·······································································6
1.4播种机械的发展趋势·····························································7
第2章 总体设计····································································9
2.1 概述···············································································9
2.2 设计任务········································································10
2.3 设计目的········································································10
2.4 动力方案选择···································································10
2.5 设计题目分析及设计思想·····················································12
2.6 设计主参数及机构类型确定··················································12
2.6.1工作速度······································································12
2.6.2播量的确定···································································13
2.6.3种、肥箱的容积······························································13
2.6.4机架设计······································································14
2.6.5工作幅度······································································14
2.6.6 排种、排肥机构设计·························································14
2.6.7开沟器设计····································································18
2.6.8覆土器设计···································································22
2.6.9镇压轮设计····································································23
2.6.10 地轮设计····································································23
第3章  传动设计及播种技术措施···········································25
3.1传动原理简图和动力传递路线图····································25
3.1.1传动原理简图·································································25
3.1.2动力传动路线图······························································25
3.2传动原理·········································································25
3.3技术措施·········································································26
3.3.1播种均匀性和各行排量一致性措施·········································26
3.3.2降低破种率措施······························································27
3.3.3种肥同播时,肥料的利用率··················································27
第4章 零部件设计·······························································28
4.1种箱及肥箱设计·································································28
4.2开沟器设计及校核······························································29
4.3排种器···········································································31
4.4地轮参数确定···································································32
4.4.1轮子直径和轮辋宽度的确定·················································32
4.4.2轮子滚动阻力计算····························································32
4.5汽油机的选择及链轮设计······················································33
4.5.1汽油机总功率确定····························································33
4.5.2汽油机及减速器的选择······················································34
4.5.3传动比的确定·································································35
4.5.4链轮选择及设计计算·························································36
4.6地轮轴设计······································································41
4.7键的校核·········································································47
4.8销的校核·········································································48
4.9轴承的校核······································································49
第5章 播种机使用·······························································50
5.1播种量调整······································································50
5.2实际操作说明···································································51
5.2.1播种作业前准备······························································51
5.2.2播种机的试播及作业·························································53
5.2.3播种机的保养与保管·························································54
5.2.4播种质量检查·································································54
第6章 毕业设计小结····························································57
参考文献·············································································59


摘要

随着近来温室大棚的发展以及环保发展意识的日益增强,小型机的需求就显得更为重要,尤其是微动力装置的机械。然而目前广泛应用的播种机是以内燃机及人力为动力装置。本设计电动小型播种机与传统的播种机相比.新颖之处在于播种机采用汽油机为动力装置,从而改善了人们在田间作业时的工作环境,况且更符合环保发展的观点。
本设计主要用于农户田间播种和设施种植播种.增加部分装置也可用于施肥、耙磨、除草等田间作业。详细介绍了播种机的结构组成以及各部件的形式、要求以及功用。详细介绍了汽油机驱动小型播种机动力装置及各部件要求,包括播种机的动力选择、机械传动的选择及尺寸、排种轮设计、排肥轮的设计、开沟器的设计、轴的设计、链轮的设计、其他的各部件设计以及播种机的工作要求、播种前的准备及播种机的使用等。在设计中考虑播种深度连续可调、播种行距连续可调、播种穴距可调、种子破碎率和播种均匀度符合国家标准。设计中在考虑实用的同时,兼顾经济节约,从而达到结构合理、生产成本低、能耗小、效率高,而且操作方便的目的。


关键词:汽油机 小型 播种机



Abstract
With the development of the greenhouse and the consiousness of protecting our ervironment ,boosting up ,the apply of the powy machine becomes more important ,especially the machine with electric power .but at the present time the seeding-machine which is adopted abroadly is drived ba gad engine or man power .this kind of minitype seeding-machine knows from the conventional seeding-machine .Its novel aspect is its drive set which are drived by electric power completly ,so they will improve the work condition ,and accord with euthenics .
   This design is applied mostly with the farms of the farmers ,they can also used to fertilize、abrade、get rid of grass and so on ,when we incress some equipment .My design introduce the structure of the seeding-machine and the types of many parts 、some request an fuction .My design introduce the drive equipment of the machine and the types of many parts 、request and fuction .My design also introduce the drive equipment of the machine and the request of the parts which consist of the selecting of the power 、the size 、the design of the axial 、chain wheel 、some other parts and so on .We must consider suiting well of the depth 、the row spacing 、the distance of scoop and the rate of seeds breaking up when seeding .In my design ,while thinking over applied ,I give attention to saving econmy ,consequently achieve structure in reason 、the cost of produce lowness 、the cost of power lowness 、the effidiency highness and convenient when operating .  


KEY  WORDS gasoline engine   minitype  seeding-machine  


内容简介:
河北建筑工程学院毕业设计(论文)任务书课题名称小型电动助力播种机设计 系: 机 械 工 程 系 专业: 机械设计制造及其自动化 班级: 机081班 姓名: 张亚东 学号: 26号 起迄日期: 2012年3月19日 2012年 6月24日 设计(论文)地点: 机械系小院 指导教师: 孙 有 亮 辅导教师: 发任务书日期: 2012年3月 19 日 1、本毕业设计(论文)课题应达到的目的: 1)培养学生综合应用所学理论知识和技能,分析和解决机械工程实际问题的能力,熟悉生产技术工作的一般程序和方法。 2)培养学生懂得工程技术工作所必须的全局观念、生产观念和经济观念,树立正确的设计思想和严肃认真的工作作风。 3)培养学生调查研究,查阅技术言文献、资料、手册,进行工程计算、图样绘制及编写技术文件的能力。2、本毕业设计(论文)课题任务的内容和要求(包括原始数据、技术要求、工作要求等): 本毕业设计课题任务的内容:电动助力式小型播种机以人力和电动机(48V直流)动力相结合,主要用于农户田间播种和设施种植播种(以小麦、玉米为主),增加部分装置也可用于施肥、耙磨、除草等田间作业。技术要求:播种深度2060mm连续可调,播种行距200500mm连续可调,播种穴距0500mm可调,种子破碎率和播种均匀度符合国家标准,工作要求:最大生产率为10亩/日。该机结构主要由机架、动力装置、操纵机构、开沟器、镇压轮、播种量调节器和料斗等组成。本设计要求达到结构合理、生产成本低、能耗小,效率高,满足工作性能,而且操作方便的目的。设计成果要求设计图纸和设计计算书各1套,并进行计算机仿真样机和优化设计。3、对本毕业设计(论文)课题成果的要求(包括图表、实物等硬件要求):设计说明书不少于2万字;工程绘图量不少于折合成图幅为A0号的图纸3张;用计算机进行设计、计算与绘图一般不少于2/3;并进行计算机仿真样机和优化设计。查阅文献15篇以上,翻译与课题有关的外文资料,译文字数不少于3000字。4、主要参考文献1 董刚 李建功 潘凤章主编.机械设计(第三版)北京:机械工业出版社19982成大先主编.械设计图册 北京:化学工业出版社 19973蔡春源主编.机电液设计手册 北京:机械工业出版社 19974徐灏主编.新编机械设计师手册 北京:机械工业出版社 19955朱喜林 张代治主编.机电一体化设计基础 北京:科学出版社 20046求是科技编著.PLC应用开发技术与工程实践 北京:人民邮电出版社 20057雷天觉主编.液压工程手册 北京:机械工业出版社 19908孙桓 陈作模主编.机械原理(第六版)北京:高等教育出版社 20019王爱玲主编.现代数控机床 北京:国防工业出版社 200310赵如福主编.金属机械加工人员手册(第三版)上海科学技术出版社 199011齐麟 张亚雄 黎上威 董学朱 胡松春编著 蜗杆传动设计(上、下册)北京:机械工业出版社 198712齿轮手册编委会编著 齿轮手册(上、下册) 北京:机械工业出版社 199013现代机械传动手册编委会编著 现代机械传动手册 北京:机械工业出版社 199514郭爱莲主编.新编机械工程技术手册 经济日报出版社 199115杨公源主编.机电控制技术及应用 北京:电子工业出版社 200516袁任光编著.可编程序控制器选用手册 北京:机械工业出版社 200217饶振纲 王勇卫编著.滚珠丝杠副及自锁装置 北京:国防工业出版社 199018陆玉 何在洲 佟延伟主编.机械设计课程设计(第三版)北京:机械工业出版社 199919数字化手册系列(软件版)编写委员会编著.机械设计手册(软件版)R2.0北京:机械工业出版社 19995、本毕业设计(论文)课题工作进度计划:起 迄 日 期工 作 内 容64.084.076.186.24完成毕业实习报告,开题报告。设计任务分析与总体方案的确定。 实施设计、计算、绘图、试验。 进行计算机仿真样机和优化设计,并编写设计说明书。毕业设计(论文)答辩及成绩评定。教研室审查意见:教研室主任签字: 年 月 日系审查意见: 系主任签字: 年 月 日河北建筑工程学院毕业实习报告系 别 机械工程系 专 业 机械设计制造及其自动化 班 级 机083 姓 名 王晓良 学 号 2008307335 指导教师 孙有亮 实习成绩 毕业实习报告一、实习目的毕业实习是工科本科学生的一个很重要的实践性教学环节。其任务是根据机械设计及其自动化专业的培养目标,组织学生参观相关的机械企业或部门,培养学生重视实践、增强理论联系实际的观念,深入调查研究、拓宽视野、增强面向人才市场、服务于社会的观念。我们这半学期的主要任务就是进行毕业设计,把我们大学四年所学到的机械知识理论联系现实生产需求进行综合应用。这样即可以进一步巩固所学的理论知识,又对即将走向的工作岗位作一次实战性的演习。因此这次毕业设计对于我们这些即将走向工作岗位的大四的毕业生来说是很重要的。为了给毕业设计做一个良好的铺垫,毕业实习是一个不可缺少的环节。二、实习内容及进度最初是为期两周的与机械相关的英文资料的翻译,期间我们查阅了大量与设计相关的资料,其后就进入了毕业实习阶段。在孙老师的带领下,我们首先来到了张家口宣化农机公司参观实习。宣化农机主营各种玉米,土豆播种和收获机械,因此地特殊的地域和气候环境我们见到的是中小型农机,没见到大型农机,不过见一事之真如,则见事事之真如。不同的厂家不同的产品,使我们开拓了眼界,了解了一个好的设计不一定是复杂的,虽然很简单,但你会说我怎么没想到,这就是创新和发散思维。比如保定一家公司的滚筒式播种机的设计就只用一个弹簧和九十度折角的小杠杆,就能做到只在接地时排种,虽简单却是专利产品。第二阶段我们在孙老师的带领下去唐山一家农机生产工厂。首先对我们进行安全教育。老师给我们看安全生产记录还有事故案例,一些注意事项加血淋淋的案例,尽管我很害怕,不敢听不敢看,但我不能,我必须听还要看,还要做笔记,这些血淋淋的案件给人们敲响了警钟。老师给我们提了好多要求,我们都必须做到,毕竟事故发生了谁也负担不起。生命是无价的,一旦有严重损伤是无法恢复的。安全规范如下:不允许穿凉鞋进厂;进厂必须穿长裤; 禁止在厂里吸烟,被发现者罚款;进厂后衣服不准敞开,外套不准乱挂在身上,不得背背包进厂; 人在厂里不要成堆,不要站在主干道上 注重自身和学校形象;不准乱按按扭、开关。再老师的带领下我们了学习了从了解需求到设计,工艺制定,生产装配及测试的流程。老师告诫我们产品设计是个综合信息处理的复杂过程,它最终的结果是把线条、符号、数字绘制成合理的设计图样,设计人员应从以下几个方面综合考虑; (l)简化每个零件的形状,使机器结构简单; (2)合并零件的功能,减少零件的种类或数量; (3)应用新结构、新工艺、新材料、新原理来简化产品结构,提高产品的可*性; (4)分解部件,研究其装配、组装的最简单的结构; (5)对相似零件进行分组; (6)对相似产品按标准数序列进行产品系列化分析; (7)实现产品零件的通用化和标准化。 产品设计人员提高设计质量的关键在于自觉、主动地学习与生产加工过程和加工工艺方面有关的知识,熟练掌握设计技巧。好的设计如果没有好的工艺是会大打折扣的,工艺没有最好只有更好,工艺的改进是无止境的。改进工艺方案: (l)避免没有必要的切削加工,特别是没必要的装夹基准面的切削加工。焊接件准备用自动化程度较高的焊接机器人进行焊接时,应考虑组成零件的焊前加工,保证焊接件各组成零件之间的相互位置尺寸,否则误差太大,机器人将无法自动跟踪焊接。(2)在保证零部件可*、合理使用的前提下,降低尺寸公差、表面粗糙度、形位公差等加工精度等级要求。 (3)减少零件的弯曲形状和复杂程度,降低废品率和生产制造成本。 (4)型钢在进行长度下料时,尽量把火焰切割改为型钢剪切下料;一般板料的火焰切割改为用剪板机剪切下料;长方形条状工件从四边剪切改为用条钢,仅仅是长度上的剪切下料。通过对农机的生产过程参观,对生产过程的细节问题有了更深的认识,纸上的来终觉浅。如配合和公差以前以为机械是粗糙的活,现在才发现自己是有偏见的,机械是粗中有细。轴承配合误差不能超过俩道(一百道一毫米)。机架要平行且上面的空要定位精确才能保证安装省时省力,提高效率。通过互联网我们了解了国外的先进设备和制造工艺,我们的差距还很大。三、实习结果通过这次的毕业实习加上老师在实习过程中的现场指导,使我对其他同学的课题有了进一步的认识。更了解了自己的不足生产实习是教学计划中一个重要的实践性教学环节,虽然时间不长,但在实习的过程中,都学到了很多东西。在实习的过程中,我对于各种加工机床有了更加直观的了解,通过现场观看各种零件在机床上的加工过程,我对机械制造技术基础上所讲的夹具、定位方法、加工工序、工步等概念有了更加深入的认识;我了解到大多数零件生产工序大致有两种,一种是最原始的手摇手柄定位加工,精确性不高,要求工人有很强的操作能力;另一种是数控控制,由设备自动控制完成的,操作者只是装卸辅助,但这个前提是操作者会操作机器。实习中,我认识到书本理论知识与现实操作的差距,比如,在课堂上时说到自由度、刀具什么的都头头是道,可真正到了工厂里一问这个限定了几个自由度就蒙了,更别说辨认刀具了。但是,这也并不是说书本知识与实际生产完全脱节,在实习参观过程中,有好多知识都得到了体现。比如,我们在机械制造技术基础中所学的编制零件加工工序卡片,我在好多零件加工旁都看到了类似的卡片,听到和见到给人的印象是不一样的。在这短短的一个月的实习中,孙老师带领和教导下以及自已的努力参与学习,对机械专业的各个方面有了深刻的理解和认识,并且巩固了书本上的知识,将理论运用到实际中去,从实际施工中丰富自已的理论知识,学会运用辩证法去处理机械生产中遇到的各种问题,我坚信能过这一段时间的实习,所获得的实践经验对我终身受益,在我毕业后的实际工作中将不断的得到验证。 四、实习总结生产实习是我们机械专业知识结构中不可缺少的组成部分,其目的在于通过实习使学生获得基本生产的感性认识,理论联系实际,扩大我们的知识面;同时又是锻炼和培养学生业务能力及素质的重要渠道,培养当代大学生具有吃苦耐劳的精神,也是学生接触社会、了解企业的一个绝好的机会。我们的实习达到了我们所希望的效果,相信通过此次毕业实习,会使我们每一位同学将理论与实际结合的更紧密,更能够使我们掌握工程机械设计的基本流程、各种参数的选取、各种影响因素产生的特点;使我们从容的面对以后的设计和即将踏入的工作岗位。为期一个学期的毕业设计即将结束,也就意味着我的大学生活即将结束。实习虽然结束了,再过两个多月,我们真的就要走上工作岗位了,想想自己大学四年的生活,有许多让我回味的思绪,我感谢老师们对我的谆谆教会,在这个春意盎然的季节,伴随着和煦的春风一起飞扬,飞向远方,去追逐我的梦想!河 北 建 筑 工 程 学 院 本科毕业设计(论文)题目小型自走式播种机设计(汽油机驱动)系 别 机械工程系 学 科 专 业 机械设计制造及其自动化 班 级 机083 姓 名 王晓良 指 导 教 师 孙有亮 完 成 日 期 2012年6月17日 河北建筑工程学院毕业设计(论文)开题报告课题名称小型自走式播种机设计(汽油机驱动)系 别: 机械工程系 专 业: 机械设计制造及其自动化 班 级: 机083班 学生姓名: 王晓良 学 号: 35号 指导教师: 孙 有 亮 开题时间: 2012年3月23日 课题来源指导教师课题课题类别工程设计类一、论文资料的准备1.资料准备1)在中国知网搜索相关论文,加深对播种机各个机构的了解,并熟悉设计过程。1)在百度搜小型自走式播种机设计(汽油机驱动)现状、流行趋势及加工要求。并加深对播种机的了解。4)到图书馆借阅机械设计相关资料,了解设计中需要注意的问题。2. 小型自走式播种机的种类播种机的种类很多,一般可按下列方法进行分类。1)按播种方式分为撒播机、条播机、穴播机和精密播种机。2)按适应作物分为谷物播种机、中耕作物播种机及其他作物播种机。3)按联合作业分为施肥播种机、播种中耕通用机、旋耕播种机、旋耕铺膜播种机。4)按动力联接方式分为牵引式、悬挂式和半悬挂式。5)按排种原理分为机械式、气力式和离心式播种机。3.播种机的历史概况公元前1世纪,中国已推广使用耧,这是世界上最早的条播机具,至今仍在北方旱作区广泛应用。欧洲第一台播种机于1636年在希腊制成。1830年,俄国人在畜力多铧犁上加装播种装置制成犁播机。英、美等国在1860年以后开始大量生产畜力谷物条播机。20世纪以后相继出现了牵引和悬挂式谷物条播机,以及运用气力排种的播种机。1958年挪威出现第一台离心式播种机,50年代以后逐步发展各种精密播种机。 我国在20世纪50年代从国外引进谷物条播机、棉花播种机等,60年代先后研制成功悬挂式谷物播种机(如图1-3)、离心式播种机、通用机架播种机和气吸式播种机等多种机型,并研制成功了磨纹式排种器。到70年代,已形成播种中耕通用机和谷物联合播种机两个系列并投入生产。供谷物、中耕作物、牧草、蔬菜用的各种条播机和穴播机都已得到推广使用。与此同时,还研制成功了多种精密播种机。4.播种机的现状及发展趋势播种机的设计开发向大型机械化和小型专业化两个方向发展。在发展大功率拖拉机的地区趋向于进一步增大播种机的工作幅宽和作业速度,改善高速作业下的播种质量。小型专业播种机将更广泛地被应用于玉米、甜菜、棉花、豆类和某些蔬菜作物。排种器零件的制造精度将不断提高,并更多地采用可以在发生异常情况下及时发出报警信号的电子监视装置。此外,播种方法也在不断改进,如采用蠕动泵排种的胶液播种法,可免除不良土壤条件对种子发芽的影响,还能同时施用农药、肥料等。随着农业结构调整的不断推进,各地的温室大棚也越建越多,大棚耕作机械成了农户耕作的急需品。但国内现有的大棚耕作机械显现出机型不多、应用不方便的特点,且多为借用现有的露地用小型耕作机械。近几年针对温室、大棚等特殊耕作环境,国内农机生产厂家研制生产了一些小型耕作机械。但产品大多存在体积大、操作不灵便、在边角地带无法工作、漏耕严重、生产效率低、适应性较差等缺陷,在作业性能、可靠性和耐久性等方面也都存在一些问题。由于多数以柴油机为动力源,这样在封闭的条件下,农产品也受到排放污染,这样产量与产品品质都受到影响。而且在动力装置自身上消耗的功率也不可忽视。相比之下,国外设施农业耕作机械技术非常成熟,其机械作业性能稳定、功能齐全、小巧轻便,但进口机型价格高,一般每台在7000元以上,而且配件不全,维修服务跟不上。我国生产的多功能农田管理机一般比国外的同类机型价格低一半,但其质量往往又让消费者担心。因此,国内目前急需开发小型精密或精量播种机。二、本课题的目的(重点及创新点)本毕业设计(论文)课题应达到的目的:1培养学生综合应用所学理论知识和技能,分析和解决机械工程实际问题的能力,熟悉生产技术工作的一般程序和方法。 2培养学生懂得工程技术工作所必须的全局观念、生产观念和经济观念,树立正确的设计思想和严肃认真的工作作风。3培养学生调查研究,查阅技术言文献、资料、手册,进行工程计算、图样绘制及编写技术文件的能力。4. 我国幅员辽阔,地形复杂,有很多耕地分布在山地和丘陵,不利于大型机械的作业,我设计的这款便携式电动助力播种机自重轻、适应性好,能满足各种地形的需要,减轻广大农民的劳动强度、提高劳动生产率。5 巩固扩大学生对大学基础课程专业知识的掌握,提高分析与解决实际问题的能力;提高解决较复杂工程计算的工作能力;提高计算机绘图的工程图绘制能力。重点:本课题主要包括:小型播种机的总体设计、传动设计及播种技术措施、零部件设计等。该机结构主要由机架、动力装置、操纵机构、开沟器、镇压轮、播种量调节器和料斗等组成。对总体设计需对播种机的工作原理、各机构之间关系、各零、部件组成及关系进行掌握。创新点:本课题采用汽油机机,向小型专业化发展,较人力播种机提高工作速度和工作效率,小型汽油机代替了拖拉机驱动播种机,缩小了转弯半径,减少了碳排放和噪声污染,降低了作业成本;四轮驱动和两轮驱动方便转换,增强了松软土壤作业的适应性和机动能力。适合在小块地域及封闭环境工作,节能环保。便于设施种植和有电力条件的农田使用。三、主要内容、研究方法、研究思路主要内容及要求:本课题任务的主要内容包括:小型播种机的总体设计、传动设计及播种技术措施、零部件设计、电气控制系统设计等。本设计具体要求如下:1.技术要求:播种深度2060mm连续可调,播种行距200500mm连续可调,播种穴距0500mm可调,种子破碎率和播种均匀度符合国家标准。2.设计要求达到结构合理、生产成本低、能耗小,效率高,满足工作性能,而且操作方便的目的。3.工作要求:要求最大生产率为10亩日。研究方法及思路: (1)、根据工作环境要求及设计要求确定其工作原理,选择机构和传动方式。 1.考虑大棚的土壤硬度,电动机功率的选择可以较低;同时注意电气线路部分的高度绝缘。 2.零件可直接选择标准件,其他的小型部件可以自行设计加工。为了结构的复杂性,选链条作为传动方式。 3.为了增大整机的作业牵引力,故把地轮向后调。后面的两个镇压轮也改为电机驱动,使整机变为四轮驱动的形式。 4.因作业场地和机身重量都比较小,整转弯的时候可手动转弯,不对转弯进行机械设计。 (2)初步确定主机、主要元件或构件的基本参数和技术性能,如功率、承载、速度、行程或调节幅度、外形尺寸等。 1.播种机的运行速度保持在与人的步行速度。 2.其功率大小,需要根据实地实验进行测算而确定下来。外形尺寸根据以往的成功设计,而选择两垄的播种机机架。而开沟器,覆土器,播种速度,施肥量等可自行调节。 3.通过机构的调整加大机身重量等,可以使整机的地面接触力更大。 (3)、通常提出几种不同方案,从技术和设计两个方面比较论证,选择最理想的。通过实验,最终确定所选择的设计方案。基本播种方式有:条播、穴播(点播)、撤播、精密播种、及联合作业播种机五种。这几种机型的辅助部件基本相同,只是其核心工作部件排种器有较大差异。设计方案一:汽油机为动力装置,单行播种。1.优点:结构简单,速度便于控制,对操作人员技术要求不高,对环境无污染。2.缺点:作业效率较低,能源需要定时补给,不适合长时间的作业。设计方案二:汽油机机动力,双行播种。1.优点:结构简单,速度便于控制,无污染,可以方便在大棚环境中工作。2.缺点:双行播种,能源利用率低,工作总量较小,对操作距离有限制,需要自行手动转弯。设计方案三:汽油机动力,三行播种。1.优点:结构简单,速度便于控制,污染小,工作效率更高。2.缺点:作业阻力大,工作总量小,制作比较复杂。 经过比较,我选用交流电机动力,双行播种,兼顾效率和经济性。四、总体安排和进度(包括阶段性工作内容及完成日期)3.193.25 完成毕业实习报告,开题报告。3.264.08 设计任务分析与总体方案的确定。 4.095.20 实施设计、计算、绘图、试验。5.216.17 进行计算机仿真样机和优化设计,并编写设计说明书。6.186.24 毕业设计(论文)答辩及成绩评定。五、主要参考文献1 董刚 李建功 潘凤章主编.机械设计(第三版)北京:机械工业出版社19982成大先主编.械设计图册 北京:化学工业出版社 19973蔡春源主编.机电液设计手册 北京:机械工业出版社 19974徐灏主编.新编机械设计师手册 北京:机械工业出版社 19955朱喜林 张代治主编.机电一体化设计基础 北京:科学出版社 20046求是科技编著.PLC应用开发技术与工程实践 北京:人民邮电出版社 20057雷天觉主编.液压工程手册 北京:机械工业出版社 19908孙桓 陈作模主编.机械原理(第六版)北京:高等教育出版社 20019王爱玲主编.现代数控机床 北京:国防工业出版社 200310赵如福主编.金属机械加工人员手册(第三版)上海科学技术出版社 199011齐麟 张亚雄 黎上威 董学朱 胡松春编著 蜗杆传动设计(上、下册)北京:机械工业出版社 198712齿轮手册编委会编著 齿轮手册(上、下册) 北京:机械工业出版社 199013现代机械传动手册编委会编著 现代机械传动手册 北京:机械工业出版社 199514郭爱莲主编.新编机械工程技术手册 经济日报出版社 199115杨公源主编.机电控制技术及应用 北京:电子工业出版社 200516袁任光编著.可编程序控制器选用手册 北京:机械工业出版社 200217饶振纲 王勇卫编著.滚珠丝杠副及自锁装置 北京:国防工业出版社 199018陆玉 何在洲 佟延伟主编.机械设计课程设计(第三版)北京:机械工业出版社 199919数字化手册系列(软件版)编写委员会编著.机械设计手册(软件版)R2.0北京:机械工业出版社 1999指导教师意见: 指导教师签名: 日期:教研室意见:教研室主任签名: 日期:系意见:系领导签名: 日期:系盖章摘要随着近来温室大棚的发展以及环保发展意识的日益增强,小型机的需求就显得更为重要,尤其是微动力装置的机械。然而目前广泛应用的播种机是以内燃机及人力为动力装置。本设计电动小型播种机与传统的播种机相比.新颖之处在于播种机采用汽油机为动力装置,从而改善了人们在田间作业时的工作环境,况且更符合环保发展的观点。本设计主要用于农户田间播种和设施种植播种.增加部分装置也可用于施肥、耙磨、除草等田间作业。详细介绍了播种机的结构组成以及各部件的形式、要求以及功用。详细介绍了汽油机驱动小型播种机动力装置及各部件要求,包括播种机的动力选择、机械传动的选择及尺寸、排种轮设计、排肥轮的设计、开沟器的设计、轴的设计、链轮的设计、其他的各部件设计以及播种机的工作要求、播种前的准备及播种机的使用等。在设计中考虑播种深度连续可调、播种行距连续可调、播种穴距可调、种子破碎率和播种均匀度符合国家标准。设计中在考虑实用的同时,兼顾经济节约,从而达到结构合理、生产成本低、能耗小、效率高,而且操作方便的目的。关键词:汽油机 小型 播种机AbstractWith the development of the greenhouse and the consiousness of protecting our ervironment ,boosting up ,the apply of the powy machine becomes more important ,especially the machine with electric power .but at the present time the seeding-machine which is adopted abroadly is drived ba gad engine or man power .this kind of minitype seeding-machine knows from the conventional seeding-machine .Its novel aspect is its drive set which are drived by electric power completly ,so they will improve the work condition ,and accord with euthenics . This design is applied mostly with the farms of the farmers ,they can also used to fertilize、abrade、get rid of grass and so on ,when we incress some equipment .My design introduce the structure of the seeding-machine and the types of many parts 、some request an fuction .My design introduce the drive equipment of the machine and the types of many parts 、request and fuction .My design also introduce the drive equipment of the machine and the request of the parts which consist of the selecting of the power 、the size 、the design of the axial 、chain wheel 、some other parts and so on .We must consider suiting well of the depth 、the row spacing 、the distance of scoop and the rate of seeds breaking up when seeding .In my design ,while thinking over applied ,I give attention to saving econmy ,consequently achieve structure in reason 、the cost of produce lowness 、the cost of power lowness 、the effidiency highness and convenient when operating . KEY WORDS gasoline engine minitype seeding-machine 设计题目: 小型自走式播种机(汽油机驱动) 姓 名: 王晓良 班级学号: 2008307335 指导教师: 孙有亮 设计题目: 小型自走式播种机(汽油机驱动) 姓 名: 王晓良 班级学号: 2008307335 指导教师: 孙有亮 目录第1章 前言11.1播种机的常识和技术现状11.2播种方式及常见播种类型31.2.1条播31.2.2穴播41.2.3撒播41.2.4精密播种41.2.5联合作业机和免耕播种51.3播种工作过程和机械构造51.3.1工作过程51.3.2机械构造61.4播种机械的发展趋势7第2章 总体设计92.1 概述92.2 设计任务102.3 设计目的102.4 动力方案选择102.5 设计题目分析及设计思想122.6 设计主参数及机构类型确定122.6.1工作速度122.6.2播量的确定132.6.3种、肥箱的容积132.6.4机架设计142.6.5工作幅度142.6.6 排种、排肥机构设计142.6.7开沟器设计182.6.8覆土器设计222.6.9镇压轮设计232.6.10 地轮设计23第3章 传动设计及播种技术措施253.1传动原理简图和动力传递路线图253.1.1传动原理简图253.1.2动力传动路线图253.2传动原理253.3技术措施263.3.1播种均匀性和各行排量一致性措施26 3.3.2降低破种率措施27 3.3.3种肥同播时,肥料的利用率27第4章 零部件设计28 4.1种箱及肥箱设计28 4.2开沟器设计及校核29 4.3排种器314.4地轮参数确定324.4.1轮子直径和轮辋宽度的确定324.4.2轮子滚动阻力计算324.5汽油机的选择及链轮设计334.5.1汽油机总功率确定334.5.2汽油机及减速器的选择344.5.3传动比的确定354.5.4链轮选择及设计计算364.6地轮轴设计414.7键的校核474.8销的校核484.9轴承的校核49第5章 播种机使用505.1播种量调整505.2实际操作说明515.2.1播种作业前准备515.2.2播种机的试播及作业535.2.3播种机的保养与保管545.2.4播种质量检查54第6章 毕业设计小结57参考文献59河北建筑工程学院毕业设计(论文)外文资料翻译 系别: 机 械 工 程 系 专业: 机械设计制造及其自动化 班级: 机083班 姓名: 王晓良 学号: 2008307335 外文出处:Proceedings ofthe 1998 IEEEInternational Conference on Robotics & Automation 附 件:1、外文原文;2、外文资料翻译译文。指导教师评语:签字: 年 月 日Proceedings ofthe 1998 IEEEInternational Conference on Robotics & AutomationLeuven, Belgium May 1998113A practical approach to feedback control for a mobile robot with trailerF. Lamiraux and J.P. LaumondLAAS-CNRSToulouse, Franceflorent ,jpllaas.frAbstractThis paper presents a robust method to control a mobile robot towing a trailer. Both problems of trajectory tracking and steering to a given configuration are addressed. This second issue is solved by an iterative trajectory tracking. Perturbations are taken into account along the motions. Experimental results on the mobile robot Hilare illustrate the validity of our approach.1 IntroductionMotion control for nonholonomic systems have given rise to a lot of work for the past 8 years. Brocketts condition 2 made stabilization about a given configuration a challenging task for such systems, proving that it could not be performed by a simple continuous state feedback. Alternative solutions as time-varying feedback l0, 4, 11, 13, 14, 15, 18 or discontinuous feedback 3 have been then proposed. See 5 for a survey in mobile robot motion control. On the other hand, tracking a trajectory for a nonholonomic system does not meet Brocketts condition and thus it is an easier task. A lot of work have also addressed this problem 6, 7, 8, 12, 16 for the particular case of mobile robots.All these control laws work under the same assumption: the evolution of the system is exactly known and no perturbation makes the system deviate from its trajectory.Few papers dealing with mobile robots control take into account perturbations in the kinematics equations. l however proposed a method to stabilize a car about a configuration, robust to control vector fields perturbations, and based on iterative trajectory tracking.In this paper, we propose a robust scheme based on iterative trajectory tracking, to lead a robot towing a trailer to a configuration. The trajectories are computed by a motion planner described in 17 and thus avoid obstacles that are given in input. In the following.We wont give any development about this planner,we refer to this reference for details. Moreover,we assume that the execution of a given trajectory is submitted to perturbations. The model we chose for these perturbations is very simple and very general.It presents some common points with l.The paper is organized as follows. Section 2 describes our experimental system Hilare and its trailer:two hooking systems will be considered (Figure 1).Section 3 deals with the control scheme and the analysis of stability and robustness. In Section 4, we present experimental results.The presence of obstacle makes the task of reaching a configuration even more difficult and require a path planning task before executing any motion. 2 Description of the systemHilare is a two driving wheel mobile robot. A trailer is hitched on this robot, defining two different systems depending on the hooking device: on system A, the trailer is hitched above the wheel axis of the robot (Figure 1, top), whereas on system B, it is hitched behind this axis (Figure l , bottom). A is the particular case of B, for which = 0. This system is however singular from a control point of view and requires more complex computations. For this reason, we deal separately with both hooking systems. Two motors enable to control the linear and angular velocities (,) of the robot. These velocities are moreover measured by odometric sensors, whereas the angle between the robot and the trailer is given by an optical encoder. The position and orientation(,)of the robot are computed by integrating the former velocities. With these notations, the control system of B is: (1) Figure 1: Hilare with its trailer3 Global control scheme3.1 MotivationWhen considering real systems, one has to take into account perturbations during motion execution.These may have many origins as imperfection of the motors, slippage of the wheels, inertia effects . These perturbations can be modeled by adding a term in the control system (l),leading to a new system of the formwhere may be either deterministic or a random variable.In the first case, the perturbation is only due to a bad knowledge of the system evolution, whereas in the second case, it comes from a random behavior of the system. We will see later that this second model is a better fit for our experimental system.To steer a robot from a start configuration to a goal, many works consider that the perturbation is only the initial distance between the robot and the goal, but that the evolution of the system is perfectly known. To solve the problem, they design an input as a function of the state and time that makes the goal an asymptotically stable equilibrium of the closed loop system. Now, if we introduce the previously defined term in this closed loop system, we dont know what will happen. We can however conjecture that if the perturbation is small and deterministic, the equilibrium point (if there is still one) will be close to the goal, and if the perturbation is a random variable, the equilibrium point will become an equilibrium subset.But we dont know anything about the position of these new equilibrium point or subset.Moreover, time varying methods are not convenient when dealing with obstacles. They can only be used in the neighborhood of the goal and this neighborhood has to be properly defined to ensure collision-free trajectories of the closed loop system. Let us notice that discontinuous state feedback cannot be applied in the case of real robots, because discontinuity in the velocity leads to infinite accelerations.The method we propose to reach a given configuration tn the presence of obstacles is the following. We first build a collision free path between the current configuration and the goal using a collision-freemotion planner described in 17, then we execute the trajectory with a simple tracking control law. At the end of the motion, the robot does never reach exactly the goal because of the various perturbations, but a neighborhood of this goal. If the reached configuration is too far from the goal, we compute another trajectory that we execute as we have done for the former one.We will now describe our trajectory tracking control law and then give robustness issues about our global iterative scheme.3.2 The trajectory tracking control lawIn this section, we deal only with system A. Computations are easier for system B (see Section 3.4).Figure 2: Tracking control law for a single robotA lot of tracking control laws have been proposed for wheeled mobile robots without trailer. One of them 16,a lthough very simple, give excellent results.If are the coordinates of the reference robot in the frame of the real robot (Figure 2), and if are the inputs of the reference trajectory, this control law has the following expression: (2) The key idea of our control law is the following: when the robot goes forward, the trailer need not be stabilized (see below). So we apply (2) to the robot.When it goes backward, we define a virtual robot (Figure 3) which is symmetrical to the real one with respect to the wheel axis of the trailer:Then, when the real robot goes backward, the virtual robot goes forward and the virtual system is kinematically equivalent to the real one. Thus we apply the tracking control law (2) to the virtual robot.Figure 3: Virtual robotA question arises now: is the trailer really always stable when the robot goes forward ? The following section will answer this question.3.3 Stability analysis of the trailerWe consider here the case of a forward motion , the backward motion being equivalent by the virtual robot transformation. Let us denote by a reference trajectory and bythe real motion of the system. We assume that the robot follows exactly its reference trajectory: and we focus our attention on the trailer deviation.The evolution of this deviation is easily deduced from system (1) with (System A): is thus decreasing iff (3)Our system is moreover constrained by the inequalities (4) so that and (3) is equivalent to (5)Figure 4 shows the domain on which is decreasing for a given value of . We can see that this domain contains all positions of the trailer defined by the bounds (4). Moreover, the previous computations permit easily to show that 0 is an asymptotically stable value for the variable .Thus if the real or virtual robot follows its reference forward trajectory, the trailer is stable and will converge toward its own reference trajectory.Figure 4: Stability domain for3.4 Virtual robot for system BWhen the trailer is hitched behind the robot, the former construction is even more simple: we can replace the virtual robot by the trailer. In this case indeed, the velocities of the robot and of the trailer are connected by a one-to-one mapping.The configuration of the virtual robot is then given by the following system:and the previous stability analysis can be applied as well, by considering the motion of the hitching point.The following section addresses the robustness of our iterative scheme.3.5 Robustness of the iterative schemeWe are now going to show the robustness of the iterative scheme we have described above. For this,we need to have a model of the perturbations arising when the robot moves. l model the perturbations by a bad knowledge of constants of the system, leading to deterministic variations on the vector fields. In our experiment we observed random perturbations due for instance to some play in the hitching system. These perturbations are very difficult to model. For this reason,we make only two simple hypotheses about them:where s is the curvilinear abscissa along the planned path, and are respectively the real and reference configurations, is a distance over the configuration space of the system and , are positive constants.The first inequality means that the distance between the real and the reference configurations is proportional to the distance covered on the planned path. The second inequality is ensured by the trajectory tracking control law that prevents the system to go too far away from its reference trajectory. Let us point out that these hypotheses are very realistic and fit a lot of perturbation models.We need now to know the length of the paths generated at each iteration. The steering method we use to compute these paths verifies a topological property accounting for small-time controllability17. This means that if the goal is sufficiently close to the starting configuration, the computed trajectory remains in a neighborhood of the starting configuration. In 9we give an estimate in terms of distance: if and are two sufficiently close configurations, the length of the planned path between them verifieswhere is a positive constant.Thus, if is the sequence of configurations reached after i motions, we have the following inequalities:These inequalities ensure that distCS is upper bounded by a sequence of positive numbers defined byand converging toward after enough iterations.Thus, we do not obtain asymptotical stability of the goal configuration, but this result ensures the existence of a stable domain around this configuration.This result essentially comes from the very general model of perturbations we have chosen. Let us repeat that including such a perturbation model in a time varying control law would undoubtedly make it lose its asymptotical stability.The experimental results of the following section show however, that the converging domain of our control scheme is very small. 4 Experimental resultsWe present now experimental results obtained with our robot Hilare towing a trailer, for both systems A and B. Figures 5 and 6 show examples of first paths computed by the motion planner between the initialFigure 5: System A: the initial and goal configurationsand the first path to be tracked Figure 6: System B: the initial and goal configurations,the first path to be tracked and the final maneuverconfigurations (in black) and the goal configurations (in grey), including the last computed maneuver in the second case. The lengths of both hooking system is the following: ,cm for A and cm,cm for B. Tables 1 and 2 give the position of initial and final configurations and the gaps between the goal and the reached configurations after one motion and two motions, for 3 different experiments. In both cases, the first experiment corresponds to the figure.Empty columns mean that the precision reached after the first motion was sufficient and that no more motion was performed.Comments and Remarks: The results reported in the tables 1 and 2 lead to two main comments. First,the precision reached by the system is very satisfying and secondly the number of iterations is very small (between 1 and 2). In fact, the precision depends a lot on the velocity of the different motions. Here the maximal linear velocity of the robot was 50 cm/s.5 ConclusionWe have presented in this paper a method to steer a robot with one trailer from its initial configuration to a goal given in input of the problem. This method is based on an iterative approach combining open loop and close loop controls. It has been shown robust with respect to a large range of perturbation models. This robustness mainly comes from the topological property of the steering method introduced in 17. Even if the method does not make the robot converge exactly to the goal, the precision reached during real experiments is very satisfying.Table 1: System A: initial and final configurations,gaps between the first and second reached configurations and the goalTable 2: System B: initial and final configurations,gaps between the first and second reached configurations and the goalReferences1M. K. Bennani et P. Rouchon. Robust stabilization of flat and chained systems. in European Control Conference,1995.2R.W. Brockett. Asymptotic stability and feedback stabilization. in Differential Geometric Control Theory,R.W. Brockett, R.S. Millman et H.H. Sussmann Eds,1983.3C. Canudas de Wit, O.J. Sordalen. Exponential stabilization of mobile robots with non holonomic constraints.IEEE Transactions on Automatic Control,Vol. 37, No. 11, 1992.4J. M. Coron. Global asymptotic stabilization for controllable systems without drift. in Mathematics of Control, Signals and Systems, Vol 5, 1992.5A. De Luca, G. Oriolo et C. Samson. Feedback control of a nonholonomic car-like robot, Robot motion planning and control. J.P. Laumond Ed., Lecture Notes in Control and Information Sciences, Springer Verlag, to appear.6R. M. DeSantis. Path-tracking for a tractor-trailerlike robot. in International Journal of Robotics Research,Vol 13, No 6, 1994.7A. Hemami, M. G. Mehrabi et R. M. H. Cheng. Syntheszs of an optimal control law path trackang an mobile robots. in Automatica, Vol 28, No 2, pp 383-387, 1992.8 Y. Kanayama, Y. Kimura, F. Miyazaki et T.Nogushi.A stable tracking control method for an autonomous mobile robot. in IEEE International Conference on Robotics and Automation, Cincinnati, Ohio, 1990.9 F. Lamiraux.Robots mobiles ci remorque : de la planification de chemins d: l e x h t i o n de mouuements,PhD Thesis N7, LAAS-CNRS, Toulouse, September 1997.l0 P. Morin et C. Samson. Application of backstepping techniques to the time-varying exponential stabitisation of chained form systems. European Journal of Control, Vol 3, No 1, 1997.11 J. B. Pomet. Explicit design of time-varying stabilizang control laws for a class of controllable systems without drift. in Systems and Control Letters, North12 M. Sampei, T. Tamura, T. Itoh et M. Nakamichi.Path tracking control of trailer-like mobile robot. in IEEE International Workshop on Intelligent Robots and Systems IROS, Osaka, Japan, pp 193-198, 1991.13 C. Samson. Velocity and torque feedback control of a nonholonomic cart. International Workshop in Adaptative and Nonlinear Control: Issues in Robotics, Grenoble, France, 1990.14 C. Samson. Time-varying feedback stabilization of carlike wheeled mobile robots. in International Journal of Robotics Research, 12(1), 1993.15 C. Samson. Control of chained systems. Application to path following and time-varying poznt-stabilization. in IEEE Transactions on Automatic Control, Vol 40,No 1, 1995.16 C. Samson et K. Ait-Abderrahim. Feedback control of a nonholonomic wheeled cart zncartesaan space.in IEEE International Conference on Robotics and Automation, Sacramento, California, pp 1136-1141,1991.17 S. Sekhavat, F. Lamiraux, J.P. Laumond, G. Bauzil and A. Ferrand. Motion planning and control for Hilare pulling a trader: experzmental issues. IEEE Int. Conf. on Rob. and Autom., pp 3306-3311, 1997.18 O.J. Splrdalen et 0. Egeland. Exponential stabzlzsation of nonholonomic chained systems. in IEEE Transactions on Automatic Control, Vol 40, No 1, 1995. Bolland, Vol 18, pp 147-158, 1992.一种实用的办法-带拖车移动机器人的反馈控制F. Lamiraux and J.P. Laumond拉斯,法国国家科学研究中心 法国图卢兹 florent ,jpllaas.fr摘 要本文提出了一种有效的方法来控制带拖车移动机器人。轨迹跟踪和路径跟踪这两个问题已经得到解决。接下来的问题是解决迭代轨迹跟踪。并且把扰动考虑到路径跟踪内。移动机器人Hilare的实验结果说明了我们方法的有效性。1引言 过去的8年,人们对非完整系统的运动控制做了大量的工作。布洛基2提出了关于这种系统的一项具有挑战性的任务,配置的稳定性,证明它不能由一个简单的连续状态反馈。作为替代办法随时间变化的反馈10,4,11,13,14,15,18或间断反馈3也随之被提出。从 5 移动机器人的运动控制的一项调查可以看到。另一方面,非完整系统的轨迹跟踪不符合布洛基的条件,从而使其这一个任务更为轻松。许多著作也已经给出了移动机器人的特殊情况的这一问题6,7,8,12,16。所有这些控制律都是工作在相同的假设下:系统的演变是完全已知和没有扰动使得系统偏离其轨迹。很少有文章在处理移动机器人的控制时考虑到扰动的运动学方程。但是1提出了一种有关稳定汽车的配置,有效的矢量控制扰动领域,并且建立在迭代轨迹跟踪的基础上。存在的障碍使得达到规定路径的任务变得更加困难,因此在执行任务的任何动作之前都需要有一个路径规划。 在本文中,我们在迭代轨迹跟踪的基础上提出了一个健全的方案,使得带拖车的机器人按照规定路径行走。该轨迹计算由规划的议案所描述17 ,从而避免已经提交了输入的障碍物。在下面,我们将不会给出任何有关规划的发展,我们提及这个参考的细节。而且,我们认为,在某一特定轨迹的执行屈服于扰动。我们选择的这些扰动模型是非常简单,非常一般。它存在一些共同点1。本文安排如下:第2节介绍我们的实验系统Hilare及其拖车:两个连接系统将被视为(图1) 。第3节处理控制方案及分析的稳定性和鲁棒性。在第4节,我们介绍本实验结果 。 图1带拖车的Hilare2 系统描述Hilare是一个有两个驱动轮的移动机器人。拖车是被挂在这个机器人上的,确定了两个不同的系统取决于连接设备:在系统A的拖车拴在机器人的车轮轴中心线上方(图1 ,顶端),而对系统B是栓在机器人的车轮轴中心线的后面(图1 ,底部)。 A对B来说是一种特殊情况,其中 = 0 。这个系统不过单从控制的角度来看,需要更多的复杂的计算。出于这个原因,我们分开处理挂接系统。两个马达能够控制机器人的线速度和角速度(,)。除了这些速度之外,还由传感器测量,而机器人和拖车之间的角度,由光学编码器给出。机器人的位置和方向(,)通过整合前的速度被计算。有了这些批注,控制系统B是: (1)3 全球控制方案3.1目的当考虑到现实的系统,人们就必须要考虑到在运动的执行时产生的扰动。 这可能有许多的来源,像有缺陷的电机,轮子的滑动,惯性的影响. 这些扰动可以被设计通过增加一个周期在控制系统(1) ,得到一个新的系统的形式 在上式中可以是确定性或随机变量。 在第一种情况下,扰动仅仅是由于系统演化的不规则,而在第二种情况下,它来自于该系统一个随机行为。我们将看到后来,这第二个模型是一个更适合我们的实验系统。 为了引导机器人,从一开始就配置了目标,许多工程认为扰动最初只是机器人和目标之间的距离,但演变的系统是完全众所周知的。为了解决这个问题,他们设计了一个可输入的时间-状态函数,使目标达到一个渐近稳定平衡的闭环系统。现在,如果我们介绍了先前定义周期在这个闭环系统,我们不知道将会发生什么。但是我们可以猜想,如果扰动很小、是确定的、在平衡点(如果仍然还有一个)将接近目标,如果扰动是一个随机变数,平衡点将成为一个平衡的子集。 但是,我们不知道这些新的平衡点或子集的位置。 此外,在处理障碍时,随时间变化的方法不是很方便。他们只能使用在附近的目标,这附近要适当界定,以确保无碰撞轨迹的闭环系统。请注意连续状态反馈不能适用于真实情况下的机器人,因为间断的速度导致无限的加速度。 我们建议达成某一存在障碍特定配置的方法如下。我们首先在当前的配置和使用自由的碰撞议案所描述17目标之间建立一个自由的碰撞路径,然后,我们以一个简单的跟踪控制率执行轨迹。在运动结束后,因为这一目标的各种扰动机器人从来没有完全达到和目标的轨迹一致,而是这一目标的左右。如果达到配置远离目标,我们计算另一个我们之前已经执行过的一个轨迹。 现在我们将描述我们的轨迹跟踪控制率,然后给出我们的全球迭代方法的鲁棒性问题。 3.2轨迹跟踪控制率 在这一节中,我们只处理系统A。对系统B容易计算(见第3.4节)。 图2 单一机器人的跟踪控制率 很多带拖车轮式移动机器人的跟踪控制律已经被提出。其中16虽然很简单,但是提供了杰出的成果。 如果是模拟机器人的坐标构成真实机器人(图2),如果()是输入的参考轨迹,这种控制律表示如下: (2) 我们控制律的关键想法如下:当机器人前进,拖车不需要稳定(见下文)。因此,我们对机器人使用公式(2)。 当它后退时,我们定义一个虚拟的机器人(图3)这是对称的真实一对拖车的车轮轴: 然后,当真正的机器人退后,虚拟机器人前进和虚拟系统在运动学上是等同于真正的一个。因此,我们对虚拟机器人实行跟踪控制法(2)。 图3 虚拟机器人现在的问题是:当机器人前进时,拖车是否真的稳定?下一节将回答这个问题。 3.3 拖车稳定性分析在这里我们考虑的向前运动情况下,虚拟机器人向后的运动被等值转变。让我们把坐标作为参考轨迹并且把坐标作为实际运动的系统。我们假设机器人完全跟随其参考轨迹:并且我们把我们的注意力放在拖车偏差 。这一偏差的变化很容易从系统(1)推导出(系统A) : 尽管是减少的 (3)我们的系统而且被不等量限制了 (4)因此和式(3)等价于 (5) 图4显示的范围随着给定的的值正在减少。我们可以看到,这个范围包含了拖车的所有的位置,包括式(4)所界定的范围。此外,以前的计算许可轻松地表明对于变量,0是一个渐近稳定值的变量。 因此,如果实际或虚拟的机器人按照它的参考轨迹前进,拖车是稳定的,并且将趋于自己的参考轨迹。 图4 的稳定范围 3.4虚拟机器人系统B 当拖车挂在机器人的后面,之前的结构甚至更简单:我们可以用拖车取代虚拟的机器人。在这种实际情况下,机器人的速度和拖车一对一映射的连接。然后虚拟的机器人系统表示为如下:和以前的稳定性分析可以被很好的使用通过考虑悬挂点的运动。 下面一节讨论了我们迭代计划的鲁棒性。 3.5迭代计划的鲁棒性我们现在正在显示上文所提到的迭代计划的鲁棒性。为此,我们需要有一个当机器人的运动时产生扰动的模型。 1扰动的模型系统是一个不规则,从而导致矢量场确定性的变化。在我们的实验中,我们要看到由于随机扰动导致的例如在一些悬挂系统中发挥作用。这些扰动对模型是非常困难的。出于这个原因, 我们只有两个简单的假说有: 其中s是沿曲线横坐标设计路径,和分别是真正的和参考的结构,是结构空间系统的距离并且,是正数。 第一个不等量意味着实际和参考结构之间的距离成正比的距离覆盖计划路径。第二个不等量是确保轨迹跟踪控制率,防止系统走得太远远离其参考轨迹。让我们指出,这些假设是非常现实的和适合大量的扰动模型。 我们现在需要知道在每个迭代路径的长度。我们使用指导的方法计算这些路径验证拓扑短时间的可控性17。这个也就是说,如果我们的目标是充分接近起初的结构,轨迹的计算依然是起初的结构的附近。在9 我们给出的估算方面的距离:如果 和是两种不够紧密的结构,规划路径的长度验证它们之间的关系这里是一个正数。 因此,如果 是配置依次获得的,我们有以下不等式: 这些不等式确保distCS是上界序列的正数和趋近于足够反复后的。 因此,我们没有获得渐近稳定性配置的目标,但这一结果确保存在一个稳定的范围处理这个配置。 这一结果基本上是来自我们选择非常传统扰动的模型。让我们重复这包括诸如扰动模型的时间不同的控制律无疑将使其失去其渐近稳定。实验结果如下节显示,收敛域的控制计划是非常小的。 4实验结果现在,我们目前获得的带拖车机器人Hilare系统A和B的实验结果。图5和图6显示第一路径计算的例子所规划初始配置(黑色)和目标配置(灰色)之间的运动。在第二种情况下包括上一次计算结果。连接系统的长度如下:系统A中,厘米,系统B厘米,厘米。表1和表2提供的初始和最后配置
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:小型自走式播种机设计(汽油机驱动)【17张CAD图纸+WORD毕业论文】【农业机械资料】
链接地址:https://www.renrendoc.com/p-402331.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!