

免费预览已结束,剩余5页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
同角三角函数的基本关系一、教材分析 本节课来自北师大版高中数学-必修4第三章三角恒等变形第一节同角三角函数的基本关系p113-p115的内容。是求三角函数值,化简三角函数式,证明三角恒等式的基本工具,是整个三角函数的基础,起承上启下的作用,同时,它体现的数学思想方法在整个中学学习中起重要作用。二、教学目标的及重难点1教学目标知识与技能目标:通过观察猜想出两个公式,运用数形结合的思想让学生掌握公式的推导过程,理解同角三角函数的基本关系式,掌握基本关系式在两个方面的应用:1)已知一个角的一个三角函数值能求这个角的其他三角函数值;2)证明简单的三角恒等式。过程与方法:培养学生观察猜想证明的科学思维方式;通过公式的推导过程培养学生用旧知识解决新问题的思想;通过求值、证明来培养学生逻辑推理能力;通过例题与练习提高学生动手能力、分析问题解决问题的能力以及其知识迁移能力。情感、态度与价值观:经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣。2.教学重点和难点重点:同角三角函数基本关系式的推导及应用。难点: 同角三角函数函数基本关系在解题中的灵活选取及使用公式时由函数值正、负号的选取而导致的角的范围的讨论。三、学情分析学生刚开始接触三角函数的内容,学习了任意角的三角函数,对这一方面的内容既感到新鲜又感到陌生,很有好奇心,跃跃欲试,学习热情高涨。四、教法分析与学法分析1教法分析:采取诱思探究性教学方法,在教学中提出问题,创设情景引导学生主动观察、思考、类比、讨论、总结、证明,让学生做学习的主人,在主动探究中汲取知识,提高能力。2学法分析:从学生原有的知识和能力出发,在教师的带领下,通过合作交流,共同探索,逐步解决问题.数学学习必须注重概念、原理、公式、法则的形成过程,突出数学本质。五、教学过程设计(一)创设情境 引入课题设计意图:从具体到抽象,引导学生完成抽象与具体之间的相互转换2.思考: 问题1:从以上的过程中,你能发现什么一般规律?问题2:你能否用代数式表示这两个规律?设计意图:引导学生用特殊到一般的思维来处理问题,通过观察思考,感知同角三角函数的基本关系。 (二)自主学习 推导公式1证明公式:(同角三角函数基本关系)(1)、平方关系: (2)、商的关系:回忆:任意角三角函数的定义? 学生回答:设是一个任意角,它的终边与单位圆交于点P(x,y)则:sin=y;cos=x, 引导学生注意:单位圆中所以: sin+cos=; =设计意图:引导学生运用已知知识解决未知知识,体会数学知识的形成过程。2.辨析讨论深化公式辨析1思考:上述两个公式成立有什么要求吗?设计意图:注意这些关系式都是对于使它们有意义的角而言的。如(2)式中辨析2判断下列等式是否成立:设计意图:注意“同角”,至于角的形式无关重要,突破难点。辨析3思考:你能将两个公式变形么?(师生活动:对于公式变式的认识,强调灵活运用公式的几大要点。)设计意图:对这些关系式不仅要牢固掌握,还要能灵活运用(正用、反用、变形用)如:, , 等(三)小组合作 及时训练例1.思考1:条件“是第四象限的角”有什么作用?思考2:如何建立cos与sin的联系?如何建立他们与tan的联系?设计意图:借助学生对于刚学习的知识所拥有的探求心理,让他们学习使用两个公式来求三角函数值。思考:本题与例题一的主要区别在哪儿?如何解决这个问题?设计意图: 对比之前例题,强调他们之间的区别,并且说明解决问题的方法:针对可能所处的象限分类讨论。变式2.设计意图:类比练习,已知正弦,也可求余弦、正切。变式3.设计意图:通过例题与变式使学生掌握基本关系式的应用:已知一个角的一个三角函数值能求这个角的其他三角函数值,并在求三角函数值的过程中注意由函数值正、负号的选取而导致的角的范围的讨论,培养学生分类讨论思想。突破重难点。做题技巧1.本题中体现的思想方法有:(1)本题中运用了方程的思想方法;(2)运用了分类讨论的思想方法.2.本题的结论可以作为公式来应用:在已知某角的正切值的条件下,求该角的正弦值和余弦值.练习:设计意图: 利用同角三角函数基本关系的灵活使用,解法多样,强化对公式的理解与认识。(四)总结反思,深化认识1.让学生自己总结本节课的重点、难点和学习目标,教师再补充这样做,会检测出学生听课、分析、思考和掌握知识的情况,对本节课的教学起到画龙点睛的作用。公式推导:具体算式观察猜想论证基本关系式公式应用:一般方法:先确定象限角再求值。分类讨论思想 五.作业布置:1、已知,求(1) (2)2、设计意图:巩固所学公式,并灵活运用;分层设计,题(1)是在课堂例题的延伸,题(2)是在课堂上没讲的题型,检测学生对知识的迁移能力。3.板书设计同角三角函数基本关系式一、公式 二、例题 例21、sin2+cos2=1; 例1 2、tan= 变式1 公式变形: 例3, 变式2 练习 , 变式3 三:总结 六 教学反思:教案的设计注重知识的发生,发展过程,对于公式不是直接给出,而是用用创设问题的形式引导学生去发现关系式,多让学生动手去计算,体现了教师为引导,学生为主体,体验为红线,探索得材料,研究获本质,思维促发展的教学思想;通过两种不同的例题的对比,让学生能够明白到关系式中的开方,是需要考虑
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 冰缘生态系统响应-洞察及研究
- 多糖抗病毒机制研究-洞察及研究
- 山东省德州市齐河县2024-2025学年八年级下学期期末考试物理试题(含答案)
- 北京市五十七中2025-2026学年上学期九年级物理开学测试(无答案)
- 部门级安全培训程序课件
- 量子产率优化-洞察及研究
- 低代码平台用户体验研究-洞察及研究
- 矿业清洁生产模式-洞察及研究
- 应变数据融合分析-洞察及研究
- 基于多模态感知的前置镜在产业数字化转型中的落地悖论研究
- 2025四川省水电投资经营集团有限公司所属电力公司员工招聘6人考试模拟试题及答案解析
- 2025年经济师职称考试经济基础模拟卷:反垄断法基础知识试题
- 江苏拱棚施工方案设计
- 2025版国际双语幼儿园托班入托服务合同
- 员工下班外出免责协议书
- 2025-2030中国海水利用行业经营形势分析与投资方向建议报告
- 2025年巨量引擎医药健康行业营销白皮书
- 体验单元 《分类与打包》课件 2025-2026学年大象版科学二年级上册
- 公司成立后追认合同范本
- 氯化钾使用护理课件
- QC/T 262-2025汽车渗碳齿轮金相检验
评论
0/150
提交评论