




免费预览已结束,剩余6页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省龙岩市一级达标校2014-2015学年高二上学期期末质量检查文科数学试题第卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分在每小题列出的四个选项中,选出符合题目要求的一项.)1已知集合,那么 abcd2命题“任意,0”的否定是 a不存在, 0b存在, 0 c对任意的, 0d对任意的, 03抛物线的焦点坐标为 abcd4已知等比数列中,则的值等于 a4b8cd5过抛物线焦点的直线交抛物线于,两点,若,则 a6b7c8d96在中,若,则的形状是 a锐角三角形b直角三角形c钝角三角形d等腰直角三角形7已知等差数列的公差为3,若成等比数列,则等于 abcd8“”是“表示双曲线”的 a充分而不必要条件b必要而不充分条件 c充要条件d既不充分也不必要条件(第10题图)9实数满足,则的最小值是 a b c0 d410已知函数的导函数的图象右图所示,那么函数的图象最有可能的是下图中的 a b c d11双曲线的两个焦点为,,若为其图象上一点,且,则该双曲线离心率的取值范围为 ab cd12. 定义方程的实数根为函数的“和谐点”.如果函数, 的“和谐点”分别为,则的大小关系是 abcd第卷(非选择题 共90分)二、填空题(本大题共4小题,每小题4分,共16分,把答案填在答题卡相应位置)13在中,角的对边分别为,若,的面积为2,则 .14若数列的前项和为,则该数列的通项公式 . 15已知在上单调递增,那么的取值范围是 . 16已知,是平面上的两点,若曲线上至少存在一点,使,则称曲线为“黄金曲线”下列五条曲线:; ; ; ; 其中为“黄金曲线”的是 .(写出所有“黄金曲线”的序号)三、解答题(本大题共6小题,共74分解答应写出文字说明,证明过程或演算步骤.)17(本小题满分12分)已知等差数列满足.()求数列的通项公式;()求数列的前项和取得最大值时的值18(本小题满分12分)在中,角的对边分别为,且. ()求角的大小;()若,求的值19(本小题满分12分)已知函数(为实数)在处取得极值()求的值;()求函数在区间上的最值 20(本小题满分12分)第一届全国青年运动会将于2015年10月18日在福州举行. 主办方在建造运动会主体育场时需建造隔热层,并要求隔热层的使用年限为15年. 已知每厘米厚的隔热层建造成本是4万元,设每年的能源消耗费用为(万元),隔热层厚度为(厘米),两者满足关系式:. 若无隔热层,则每年的能源消耗费用为6万元. 15年的总维修费用为10万元记为15年的总费用(总费用=隔热层的建造成本费用+使用15年的能源消耗费用+15年的总维修费用)()求的表达式;()请问当隔热层的厚度为多少厘米时,15年的总费用最小,并求出最小值21(本小题满分12分)如图,中心在原点的椭圆的焦点在轴上,长轴长为4,焦距为,为坐标原点()求椭圆的标准方程;(第21题图)()是否存在过的直线与椭圆交于,两个不同点,使以为直径的圆过原点?若存在,求出直线方程,若不存在,请说明理由22(本小题满分14分)已知函数,, ()若函数在点处的切线为,求,的值; ()求函数的单调区间;()若,不等式在恒成立,求的取值范围龙岩市一级达标校20142015学年第一学期期末高二教学质量检查数学(文科)参考答案一、选择题(本大题共12小题,每小题5分,共60分)二、填空题(本大题共4小题,每小题4分,共16分)13. 14. 15. 16.三、解答题(本大题共6小题,共74分)18(本小题满分12分)解:(),由正弦定理可知: 2分 4分 6分()由余弦定理可知: ,,即 9分或经检验:或均符合题意或 12分(注:第()小题未检验不扣分;若用正弦定理作答,酌情给分)19(本小题满分12分)解: 2分()依题意可知:,解得 4分经检验:符合题意 5分()令,得: 7分极大值25极小值 11分的最大值为,最小值为 12分20(本小题满分12分)解:()依题意,当时,故 3分 6分()10分当且仅当,即当时取得最小值隔热层修建5厘米厚时,总费用达到最小值,最小值为60万元. 12分21(本小题满分12分)解:()设椭圆的方程为:, 1分 2分 3分所以,椭圆的方程为: 4分()法一:假设存在过的直线与椭圆交于、两个不同点,使以为直径的圆过原点,依题意可知.当直线的斜率不存在时,、分别为椭圆短轴的端点,不符合题意 5分当直线的斜率存在时,设为,则直线的方程为:由得: 6分令,得: 7分设,则 8分又, 9分 10分 11分直线的方程为:,即或所以,存在过的直线与椭圆交于、两个不同点,使以为直径的圆过原点,其方程为:或 12分()法二:假设存在过的直线与椭圆交于、两个不同点,使以为直径的圆过原点,依题意可知,设直线的方程为: 5分由得: 6分令,得: 7分设,则 8分又 9分 10分 11分所求直线的方程为:,即或所以,存在过的直线与椭圆交于、两个不同点,使以为直径的圆过原点,其方程为:或 12分22(本小题满分14分)解:函数的定义域为: 1分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025电缆租赁合同范本
- 2025年解除劳动合同协议书下载
- 医院入股协议合同范本
- 车辆贷款的合同范本
- 商铺抵款合同范本
- 租赁协议车位合同范本
- 测绘协议合同范本
- 2025电商联销合同
- 饮品代理加盟合同范本
- 租公寓房合同范本
- 吉林大学《计算机网络(双语)》2021-2022学年期末试卷
- 《解除保护性止付申请书模板》
- 2024年云网安全应知应会考试题库
- 风电场投资财务模型构建
- 高层建筑火灾扑救
- 香港中文大学博士英文复试模板
- 南京大学介绍
- DL-T-255-2012燃煤电厂能耗状况评价技术规范
- 【视频号运营】视频号运营108招
- 幼儿园拍摄技巧培训
- (正式版)JBT 14682-2024 多关节机器人用伺服电动机技术规范
评论
0/150
提交评论