



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
导数与微分题型一 利用函数的定义研究函数的可导性1 设,其中有二阶导数,求。2 设函数对任意均满足等式,且有,求。3 设可导,若使在处可导,则必有( )。 。题型二 利用函数的导数求曲线的切线和法线方程4 已知是周期为5的连续函数,它在的某个领域内满足关系式,其中是当时比高阶的无穷小,且在处可导,求曲线在点处的切线方程。5 求曲线在点处的法线方程。题型三 求复合函数的导数及抽象函数的导数6 设,求。7 设,其中具有二阶导数,求。题型四 求隐函数的导数(或可化为隐函数的求导问题)8 设函数是由确定的,其中具有二阶导数,且,求。9 已知,其中为二阶可微函数,求。10设,求。题型五 求幂指函数和连乘函数的导数11设,求。题型六 混合形式的函数的导数12设函数由所确定,求。题型七 求函数的高阶导数13设,求。14设,求使存在的最大的。15设,其中在由阶连续导数,求。第三章 微分中值定理与导数的应用题型一 证明存在,使的命题。1.设在上连续,当时,(为常数)。试证明:若,则方程在上有且仅有一个实根。2. 设函数在闭区间上具有二阶导数,且。 证明:在开区间内至少存在一点使得。题型二 证明结论为的命题3.若在区间上有三阶导数,且,设,证明:在内存在一点,使得。4. 设函数在上连续,在内具有二阶导数且存在相等的最大值,且,证明:存在,使得。题型三 证明存在,使5. 设在内上连续,在内可导,且,但当时,求证对任意自然数,在内存在,使。 (提示:将所证结论中改为,两边积分后,可作出辅助函数)。6. 假设函数和在存在二阶导数,并且,试证:(1)在开区间内;(2)在开区间内至少存在一点,使。题型四 证明有两个中值满足的某种关系的命题7. 设在上连续,在内可导,且,试证 :存在,使得(提示:将要证结论改写为即证。令,对其应用拉格朗日中值定理。)8. 设在闭区间上可导,且满足关系式,证明在区间内至少存在一点,使得。题型五 证明函数的单调性和求单调区间9. 设函数在上,且,则的大小顺序是( ) 10. 设函数对一切满足,若则( ) 是的极大值 是的极小值 点是曲线的拐点 不是的极值题型六 关于不等式的证明12. 设在上具有二阶导数,且满足条件,其中都是非负常数,证明:对任意必有(提示:再将分别
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 会议预定协议书范本模板
- 劳务派遣公司的合同范本
- 科鲁兹4s店维修协议书
- 企业聘用副总经理协议书
- 合同到期要不要签协议书
- 叉车租赁及维修合同范本
- 企业专利成果转让协议书
- 亚克力雕刻制作合同范本
- 公司跟个人借款合同范本
- 代销售海产品合同协议书
- 第七单元 专题突破9 聚焦变异热点题型-2025年高中生物大一轮复习
- 《高等数学教程》全套教学课件
- 2024年个人信用报告(个人简版)样本(带水印-可编辑)
- 个人替公司代付协议
- 20CS03-1一体化预制泵站选用与安装一
- 图纸保密协议范本
- 心肺复苏术英文课件
- 关于房产权属的案外人执行异议申请书
- 文化长廊、荣誉墙施工方案(技术方案)
- (新版)职业健康综合知识竞赛题库附答案
- 更换双电源更换施工方案
评论
0/150
提交评论