




免费预览已结束,剩余2页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
75综合问题选讲一、知识导学 (一)直线和圆的方程1理解直线的斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程. 2掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系.3了解二元一次不等式表示平面区域. 4了解线性规划的意义,并会简单的应用.5了解解析几何的基本思想,了解坐标法.6掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程.(二)圆锥曲线方程1 掌握椭圆的定义、标准方程和椭圆的简单几何性质.2 掌握双曲线的定义、标准方程和双曲线的简单几何性质.3 掌握抛物线的定义、标准方程和抛物线的简单几何性质.4了解圆锥曲线的初步应用.(三)目标1.能正确导出由一点和斜率确定的直线的点斜式方程;从直线的点斜式方程出发推导出直线方程的其他形式,斜截式、两点式、截距式;能根据已知条件,熟练地选择恰当的方程形式写出直线的方程,熟练地进行直线方程的不同形式之间的转化,能利用直线的方程来研究与直线有关的问题了.2.能正确画出二元一次不等式(组)表示的平面区域,知道线性规划的意义,知道线性约束条件、线性目标函数、可行解、可行域、最优解等基本概念,能正确地利用图解法解决线性规划问题,并用之解决简单的实际问题,了解线性规划方法在数学方面的应用;会用线性规划方法解决一些实际问题.3.理解“曲线的方程”、“方程的曲线”的意义,了解解析几何的基本思想,掌握求曲线的方程的方法.4掌握圆的标准方程:(r0),明确方程中各字母的几何意义,能根据圆心坐标、半径熟练地写出圆的标准方程,能从圆的标准方程中熟练地求出圆心坐标和半径,掌握圆的一般方程:,知道该方程表示圆的充要条件并正确地进行一般方程和标准方程的互化,能根据条件,用待定系数法求出圆的方程,理解圆的参数方程(为参数),明确各字母的意义,掌握直线与圆的位置关系的判定方法.5正确理解椭圆、双曲线和抛物线的定义,明确焦点、焦距的概念;能根据椭圆、双曲线和抛物线的定义推导它们的标准方程;记住椭圆、双曲线和抛物线的各种标准方程;能根据条件,求出椭圆、双曲线和抛物线的标准方程;掌握椭圆、双曲线和抛物线的几何性质:范围、对称性、顶点、离心率、准线(双曲线的渐近线)等,从而能迅速、正确地画出椭圆、双曲线和抛物线;掌握、b、之间的关系及相应的几何意义;利用椭圆、双曲线和抛物线的几何性质,确定椭圆、双曲线和抛物线的标准方程,并解决简单问题;理解椭圆、双曲线和抛物线的参数方程,并掌握它的应用;掌握直线与椭圆、双曲线和抛物线位置关系的判定方法.二、疑难知识导析 1 直线的斜率是一个非常重要的概念,斜率反映了直线相对于轴的倾斜程度.当斜率存在时,直线方程通常用点斜式或斜截式表示,当斜率不存在时,直线方程为=(r).因此,利用直线的点斜式或斜截式方程解题时,斜率存在与否,要分别考虑. 直线的截距式是两点式的特例,、b分别是直线在轴、轴上的截距,因为0,b0,所以当直线平行于轴、平行于轴或直线经过原点,不能用截距式求出它的方程,而应选择其它形式求解.求解直线方程的最后结果,如无特别强调,都应写成一般式.当直线或的斜率不存在时,可以通过画图容易判定两条直线是否平行与垂直在处理有关圆的问题,除了合理选择圆的方程,还要注意圆的对称性等几何性质的运用,这样可以简化计算.2. 用待定系数法求椭圆的标准方程时,要分清焦点在轴上还是轴上,还是两种都存在. 注意椭圆定义、性质的运用,熟练地进行、b、间的互求,并能根据所给的方程画出椭圆.求双曲线的标准方程 应注意两个问题: 正确判断焦点的位置; 设出标准方程后,运用待定系数法求解.双曲线的渐近线方程为或表示为.若已知双曲线的渐近线方程是,即,那么双曲线的方程具有以下形式:,其中是一个不为零的常数.双曲线的标准方程有两个和(0,b0).这里,其中|=2c.要注意这里的、b、c及它们之间的关系与椭圆中的异同.求抛物线的标准方程,要线根据题设判断抛物线的标准方程的类型,再求抛物线的标准方程,要线根据题设判断抛物线的标准方程的类型,再由条件确定参数的值.同时,应明确抛物线的标准方程、焦点坐标、准线方程三者相依并存,知道其中抛物线的标准方程、焦点坐标、准线方程三者相依并存,知道其中一个,就可以求出其他两个.三、经典例题导讲例1已知点t是半圆o的直径ab上一点,ab=2、ot=(00)作直线与抛物线交于a,b两点,点q是点p关于原点的对称点.(1)设点p分有向线段所成的比为,证明:;(2)设直线ab的方程是-2+12=0,过a、b两点的圆c与抛物线在点a处有共同的切线,求圆c的方程.2制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目. 根据预测,甲、乙项目可能的最大盈利率分别为100和50,可能的最大亏损分别为30和10. 投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元. 问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?3直线的右支交于不同的两点a、b.(1)求实数的取值范围;(2)是否存在实数,使得以线段ab为直径的圆经过双曲线c的右焦点f?若存在,求出的值;若不存在,说明理由.4.已知倾斜角为的直线过点a(1,2)和点b,b在第一象限,ab3.(1) 求点b的坐标;(2) 若直线与双曲线相交于、两点,且线段的中点坐标为(4,1),求的值;(3) 对于平面上任一点,当点q在线段ab上运动时,称pq的最小值为与线段的距离. 已知点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高血压并发症的预防与控制方法
- 锅炉安全监控器行业深度研究分析报告(2024-2030版)
- 连云港锂离子电池材料项目可行性研究报告
- 2020-2025年中国整体试验机行业市场调查研究及投资战略咨询报告
- 地铁商业项目经营策划方案
- 职业目标课件
- 职业病报告课件
- 河北省张家口市师大实验中学2025届高二化学第二学期期末联考模拟试题含解析
- 职业生涯计划设计课件
- 职业生涯规划说课课件模板
- DB3502∕T 166-2024 既有厂区及老旧小区海绵城市方案设计导则
- 2025年 江西省金控科技产业集团有限公司招聘考试笔试试卷附答案
- 2025云南中考历史真题及答案
- 四川省成都市蓉城联盟2024-2025学年高一下学期6月期末考试物理试题(含答案)
- 压轴训练:全等三角形(多解、动点、新定义型压轴)(原卷版)
- DLT 5035-2016 发电厂供暖通风与空气调节设计规范
- 2024年广东省中考生物+地理试卷(含答案)
- DZ∕T 0201-2020 矿产地质勘查规范 钨、锡、汞、锑(正式版)
- 小小科学家《物理》模拟试卷A(附答案)
- 《风电场项目经济评价规范》(NB-T 31085-2016)
- AS9100D版中文版
评论
0/150
提交评论