




已阅读5页,还剩47页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
弧长与扇形面积一、选择题1. (2014浙江杭州,第2题,3分)已知一个圆锥体的三视图如图所示,则这个圆锥的侧面积为()A12cm2B15cm2C24cm2D30cm2考点:圆锥的计算专题:计算题分析:俯视图为圆的只有圆锥,圆柱,球,根据主视图和左视图都是三角形可得到此几何体为圆锥,那么侧面积=底面周长母线长2解答:解:底面半径为3,高为4,圆锥母线长为5,侧面积=2rR2=15cm2故选B点评:由该三视图中的数据确定圆锥的底面直径和高是解本题的关键;本题体现了数形结合的数学思想,注意圆锥的高,母线长,底面半径组成直角三角形2. (2014年山东东营,第5题3分)如图,已知扇形的圆心角为60,半径为,则图中弓形的面积为()ABCD考点:扇形面积的计算分析:过A作ADCB,首先计算出BC上的高AD长,再计算出三角形ABC的面积和扇形面积,然后再利用扇形面积减去三角形的面积可得弓形面积解答:解:过A作ADCB,CAB=60,AC=AB,ABC是等边三角形,AC=,AD=ACsin60=,ABC面积:=,扇形面积:=,弓形的面积为:=,故选:C点评:此题主要考查了扇形面积的计算,关键是掌握扇形的面积公式:S=3(2014四川泸州,第7题,3分)一个圆锥的底面半径是6cm,其侧面展开图为半圆,则圆锥的母线长为()A9cmB12cmC15cmD18cm解答:解:圆锥的母线长=26=12cm,故选B点评:本题考查圆锥的母线长的求法,注意利用圆锥的弧长等于底面周长这个知识点4(2014四川南充,第9题,3分)如图,矩形ABCD中,AB=5,AD=12,将矩形ABCD按如图所示的方式在直线l上进行两次旋转,则点B在两次旋转过程中经过的路径的长是()AB13C25D25分析:连接BD,BD,首先根据勾股定理计算出BD长,再根据弧长计算公式计算出,的长,然后再求和计算出点B在两次旋转过程中经过的路径的长即可解:连接BD,BD,AB=5,AD=12,BD=13,=,=6,点B在两次旋转过程中经过的路径的长是:+6=,故选:A点评:此题主要考查了弧长计算,以及勾股定理的应用,关键是掌握弧长计算公式l=5(2014甘肃兰州,第1题4分)如图,在ABC中,ACB=90,ABC=30,AB=2将ABC绕直角顶点C逆时针旋转60得ABC,则点B转过的路径长为()ABCD考点:旋转的性质;弧长的计算分析:利用锐角三角函数关系得出BC的长,进而利用旋转的性质得出BCB=60,再利用弧长公式求出即可解答:解:在ABC中,ACB=90,ABC=30,AB=2,cos30=,BC=ABcos30=2=,将ABC绕直角顶点C逆时针旋转60得ABC,BCB=60,点B转过的路径长为:=故选:B点评:此题主要考查了旋转的性质以及弧长公式应用,得出点B转过的路径形状是解题关键6.(2014襄阳,第11题3分)用一个圆心角为120,半径为3的扇形作一个圆锥的侧面,则这个圆锥的底面半径为()AB1CD2考点:圆锥的计算分析:易得扇形的弧长,除以2即为圆锥的底面半径解答:解:扇形的弧长=2,故圆锥的底面半径为22=1故选B点评:考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长7(2014四川自贡,第8题4分)一个扇形的半径为8cm,弧长为cm,则扇形的圆心角为()A60B120C150D180考点:弧长的计算分析:首先设扇形圆心角为x,根据弧长公式可得:=,再解方程即可解答:解:设扇形圆心角为x,根据弧长公式可得:=,解得:n=120,故选:B点评:此题主要考查了弧长计算,关键是掌握弧长计算公式:l=8(2014台湾,第16题3分)如图,、均为以O点为圆心所画出的四个相异弧,其度数均为60,且G在OA上,C、E在AG上,若ACEG,OG1,AG2,则与两弧长的和为何?()ABCD分析:设ACEGa,用a表示出CE22a,CO3a,EO1a,利用扇形弧长公式计算即可解:设ACEGa,CE22a,CO3a,EO1a,2(3a)2(1a) (3a1a) 故选B点评:本题考查了弧长的计算,熟悉弧长的计算公式是解题的关键9. (2014浙江金华,第10题4分)一张圆心角为45的扇形纸板和圆形纸板按如图方式剪得一个正方形,边长都为1,则扇形纸板和圆形纸板的面积比是【 】A B C D【答案】A.【解析】故选A.考点:1. 等腰直角三角形的判定和性质;2. 勾股定理;3. 扇形面积和圆面积的计算.10(2014浙江宁波,第5题4分)圆锥的母线长为4,底面半径为2,则此圆锥的侧面积是( )A6B8C12D16考点:圆锥的计算专题:计算题分析:根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解解答:解:此圆锥的侧面积=422=8故选B点评:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长11. (2014海南,第11题3分)一个圆锥的侧面展开图形是半径为8cm,圆心角为120的扇形,则此圆锥的底面半径为()AcmBcmC3cmDcm考点:弧长的计算.专题:压轴题分析:利用弧长公式和圆的周长公式求解解答:解:设此圆锥的底面半径为r,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得:2r=,r=cm故选A点评:圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长本题就是把的扇形的弧长等于圆锥底面周长作为相等关系,列方程求解12. (2014黑龙江龙东,第17题3分)一圆锥体形状的水晶饰品,母线长是10cm,底面圆的直径是5cm,点A为圆锥底面圆周上一点,从A点开始绕圆锥侧面缠一圈彩带回到A点,则彩带最少用多少厘米(接口处重合部分忽略不计)()A10cmB10cmC5cmD5cm考点:平面展开-最短路径问题;圆锥的计算.分析:利用圆锥侧面展开图的弧长等于底面圆的周长,进而得出扇形圆心角的度数,再利用勾股定理求出AA的长解答:解:由题意可得出:OA=OA=10cm,=5,解得:n=90,AOA=90,AA=10(cm),故选:B点评:此题主要考查了平面展开图的最短路径问题,得出AOA的度数是解题关键13. (2014湖北宜昌,第13题3分)如图,在44的正方形网格中,每个小正方形的边长为1,若将AOC绕点O顺时针旋转90得到BOD,则的长为()AB6C3D1.5考点:旋转的性质;弧长的计算分析:根据弧长公式列式计算即可得解解答:解:的长=1.5故选D点评:本题考查了旋转的性质,弧长的计算,熟记弧长公式是解题的关键14. (2014湖南衡阳,第11题3分)圆心角为120,弧长为12的扇形半径为()A6B9C18D36考点:弧长的计算.分析:根据弧长的公式l=进行计算解答:解:设该扇形的半径是r根据弧长的公式l=,得到:12=,解得 r=18,故选:C点评:本题考查了弧长的计算熟记公式是解题的关键15. (2014黔南州,第12题4分)如图,圆锥的侧面积为15,底面积半径为3,则该圆锥的高AO为()A3B4C5D15考点:圆锥的计算分析:要求圆锥的高,关键是求出圆锥的母线长,即圆锥侧面展开图中的扇形的半径已知圆锥的底面半径就可求得底面圆的周长,即扇形的弧长,已知扇形的面积和弧长就可求出扇形的半径,即圆锥的高解答:解:由题意知:展开图扇形的弧长是23=6,设母线长为L,则有6L=15,解得:L=5,由于母线,高,底面半径正好组成直角三角形,在直角AOC中高AO=4故选B点评:此题考查了圆锥体的侧面展开图的计算,揭示了平面图形与立体图形之间的关系,难度一般16(2014莱芜,第8题3分)如图,AB为半圆的直径,且AB=4,半圆绕点B顺时针旋转45,点A旋转到A的位置,则图中阴影部分的面积为()AB2CD4考点:扇形面积的计算;旋转的性质.分析:根据题意可得出阴影部分的面积等于扇形ABA的面积加上半圆面积再减去半圆面积,即为扇形面积即可解答:解:S阴影=S扇形ABA+S半圆S半圆=S扇形ABA=2,故选B点评:本题考查了扇形面积的计算以及旋转的性质,是基础知识,难度不大17(2014黑龙江牡丹江, 第10题3分)如图,AB是O的直径,弦CDAB,CDB=30,CD=2,则S阴影=()第1题图AB2CD考点:扇形面积的计算;勾股定理;垂径定理分析:求出CE=DE,OE=BE=1,得出SBED=SOEC,所以S阴影=S扇形BOC解答:解:如图,CDAB,交AB于点E,AB是直径,CE=DE=CD=,又CDB=30COE=60,OE=1,OC=2,BE=1,SBED=SOEC,S阴影=S扇形BOC=故选:D点评:本题考查了垂径定理、扇形面积的计算,图形的转化是解答本题的关键18. (2014湖北黄冈,第7题3分)如图,圆锥体的高h=2cm,底面半径r=2cm,则圆锥体的全面积为()cm2第2题图A4B8C12D(4+4)考点:圆锥的计算分析:表面积=底面积+侧面积=底面半径2+底面周长母线长2解答:解:底面圆的半径为2,则底面周长=4,底面半径为2cm、高为2m,圆锥的母线长为4cm,侧面面积=44=8;底面积为=4,全面积为:8+4=12cm2故选C点评:本题利用了圆的周长公式和扇形面积公式求解,牢记公式是解答本题的关键19(2014四川成都,第10题3分)在圆心角为120的扇形AOB中,半径OA=6cm,则扇形OAB的面积是()A6cm2B8cm2C12cm2D24cm2考点:扇形面积的计算分析:直接利用扇形面积公式代入求出面积即可解答:解:在圆心角为120的扇形AOB中,半径OA=6cm,扇形OAB的面积是:=12(cm2),故选:C点评:此题主要考查了扇形面积的计算,正确掌握扇形面积公式是解题关键20(2014浙江绍兴,第7题4分)如图,圆锥的侧面展开图使半径为3,圆心角为90的扇形,则该圆锥的底面周长为()ABCD考点:圆锥的计算分析:根据圆锥侧面展开扇形的弧长等于底面圆的周长,可以求出底面圆的半径,从而求得圆锥的底面周长解答:解:设底面圆的半径为r,则:2r=r=,圆锥的底面周长为,故选B点评:本题考查的是弧长的计算,利用弧长公式求出弧长,然后根据扇形弧长与圆锥底面半径的关系求出底面圆的半径21.(2014济宁,第5题3分)如果圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积为()A10cm2B10cm2C20cm2D20cm2考点:圆锥的计算分析:圆锥的侧面积=底面周长母线长2解答:解:圆锥的侧面积=2252=10故选B点评:本题考查了圆锥的计算,解题的关键是知道圆锥的侧面积的计算方法22.(2014年山东泰安,第19题3分)如图,半径为2cm,圆心角为90的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为()A(1)cm2B(+1)cm2C 1cm2Dcm2分析:假设出扇形半径,再表示出半圆面积,以及扇形面积,进而即可表示出两部分P,Q面积相等连接AB,OD,根据两半圆的直径相等可知AOD=BOD=45,故可得出绿色部分的面积=SAOD,利用阴影部分Q的面积为:S扇形AOBS半圆S绿色,故可得出结论解:扇形OAB的圆心角为90,假设扇形半径为2,扇形面积为:=(cm2),半圆面积为:12=(cm2),SQ+SM =SM+SP=(cm2),SQ=SP,连接AB,OD,两半圆的直径相等,AOD=BOD=45,S绿色=SAOD=21=1(cm2),阴影部分Q的面积为:S扇形AOBS半圆S绿色=1=1(cm2)故选:A点评:此题主要考查了扇形面积求法,根据题意作出辅助线,构造出等腰直角三角形是解答此题的关键23. ( 2014珠海,第4题3分)已知圆柱体的底面半径为3cm,髙为4cm,则圆柱体的侧面积为()A24cm2B36cm2C12cm2D24cm2考点:圆柱的计算分析:圆柱的侧面积=底面周长高,把相应数值代入即可求解解答:解:圆柱的侧面积=234=24故选A点评:本题考查了圆柱的计算,解题的关键是弄清圆柱的侧面积的计算方法24. ( 2014广西贺州,第11题3分)如图,以AB为直径的O与弦CD相交于点E,且AC=2,AE=,CE=1则弧BD的长是()ABCD考点:垂径定理;勾股定理;勾股定理的逆定理;弧长的计算分析:连接OC,先根据勾股定理判断出ACE的形状,再由垂径定理得出CE=DE,故=,由锐角三角函数的定义求出A的度数,故可得出BOC的度数,求出OC的长,再根据弧长公式即可得出结论解答:解:连接OC,ACE中,AC=2,AE=,CE=1,AE2+CE2=AC2,ACE是直角三角形,即AECD,sinA=,A=30,COE=60,=sinCOE,即=,解得OC=,AECD,=,=故选B点评:本题考查的是垂径定理,涉及到直角三角形的性质、弧长公式等知识,难度适中25(2014年贵州安顺,第8题3分)已知圆锥的母线长为6cm,底面圆的半径为3cm,则此圆锥侧面展开图的圆心角是()A30B60C90D180考点:圆锥的计算.分析:根据弧长=圆锥底面周长=6,圆心角=弧长180母线长计算解答:解:由题意知:弧长=圆锥底面周长=23=6cm,扇形的圆心角=弧长180母线长=61806=180故选D点评:本题考查的知识点为:弧长=圆锥底面周长及弧长与圆心角的关系解题的关键是熟知圆锥与扇形的相关元素的对应关系26(2014年四川资阳,第9题3分)如图,扇形AOB中,半径OA=2,AOB=120,C是的中点,连接AC、BC,则图中阴影部分面积是()A2B2CD考点:扇形面积的计算分析:连接OC,分别求出AOC、BOC、扇形AOC,扇形BOC的面积,即可求出答案解答:解:连接OC,AOB=120,C为弧AB中点,AOC=BOC=60,OA=OC=OB=2,AOC、BOC是等边三角形,AC=BC=OA=2,AOC的边AC上的高是=,BOC边BC上的高为,阴影部分的面积是2+2=2,故选A点评:本题考查了扇形的面积,三角形的面积,等边三角形的性质和判定,圆周角定理的应用,解此题的关键是能求出各个部分的面积,题目比较好,难度适中27(2014年云南省,第7题3分)已知扇形的圆心角为45,半径长为12,则该扇形的弧长为()A、 B2C3D12考点:弧长的计算分析:根据弧长公式l=,代入相应数值进行计算即可解答:解:根据弧长公式:l=3,故选:C点评:此题主要考查了弧长计算,关键是掌握弧长公式l=28(2014舟山,第8题3分)一个圆锥的侧面展开图是半径为6的半圆,则这个圆锥的底面半径为()A1.5B2C2.5D3考点:圆锥的计算分析:半径为6的半圆的弧长是6,圆锥的底面周长等于侧面展开图的扇形弧长,因而圆锥的底面周长是6,然后利用弧长公式计算解答:解:设圆锥的底面半径是r,则得到2r=6,解得:r=3,这个圆锥的底面半径是3故选D点评:本题综合考查有关扇形和圆锥的相关计算解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长正确对这两个关系的记忆是解题的关键二、填空题1. (2014四川巴中,第15题3分)若圆锥的轴截面是一个边长为4的等边三角形,则这个圆锥的侧面展开后所得到的扇形的圆心角的度数是考点:圆锥的侧面展开图,等边三角形的性质分析:根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长得到扇形的弧长为4,扇形的半径为4,再根据弧长公式求解解答:设这个圆锥的侧面展开后所得到的扇形的圆心角的度数为n,根据题意得4=,解得n=180故答案为180点评:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长2. (2014山东威海,第18题3分)如图,A与B外切于O的圆心O,O的半径为1,则阴影部分的面积是 考点:圆与圆的位置关系;扇形面积的计算分析:阴影部分的面积等于O的面积减去4个弓形ODF的面积即可解答:解:如图,连接DF、DB、FB、OB,O的半径为1,OB=BD=BF=1,DF=,S弓形ODF=S扇形BDFSBDF=,S阴影部分=SO4S弓形ODF=4()=故答案为:点评:本题考查了圆与圆的位置关系,解题的关键是明确不规则的阴影部分的面积如何转化为规则的几何图形的面积3. (2014山东枣庄,第16题4分)如图,将四个圆两两相切拼接在一起,它们的半径均为1cm,则中间阴影部分的面积为 4 cm2考点:扇形面积的计算;相切两圆的性质分析:根据题意可知图中阴影部分的面积=边长为2的正方形面积一个圆的面积解答:解:半径为1cm的四个圆两两相切,四边形是边长为2cm的正方形,圆的面积为cm2,阴影部分的面积=22=4(cm2),故答案为:4点评:此题主要考查了圆与圆的位置关系和扇形的面积公式本题的解题关键是能看出阴影部分的面积为边长为2的正方形面积减去4个扇形的面积(一个圆的面积)4. (2014山东潍坊,第15题3分)如图,两个半径均为的O1与O2相交于A、B两点,且每个圆都经过另一个圆的圆心,则图中阴影部分的面积为 (结果保留)考点:相交两圆的性质;菱形的性质分析:连接O1O2,由题意知,四边形AO1BO2B是菱形,且AO1O2,BO1O2都是等边三角形,四边形O1AO2B的面积等于两个等边三角形的面积据此求阴影的面积解答:连接O1O2,由题意知,四边形AO1BO2B是菱形,且AO1O2,BO1O2都是等边三角形,四边形O1AO2B的面积等于两个等边三角形的面积,SO1AO2B=2S扇形AO1B= S阴影=2(S扇形AO1B SO1AO2B)=故答案为:点评:本题利用了等边三角形判定和性质,等边三角形的面积公式、扇形面积公式求解5. (2014山东烟台,第17题3分)如图,正六边形ABCDEF内接于O,若O的半径为4,则阴影部分的面积等于考点:圆内接正多边形,求阴影面积分析:先正确作辅助线,构造扇形和等边三角形、直角三角形,分别求出两个弓形的面积和两个三角形面积,即可求出阴影部分的面积解答:连接OC、OD、OE,OC交BD于M,OE交DF于N,过O作OZCD于Z,六边形ABCDEF是正六边形,BC=CD=DE=EF,BOC=COD=DOE=EOF=60,由垂径定理得:OCBD,OEDF,BM=DM,FN=DN,在RtBMO中,OB=4,BOM=60,BM=OBsin60=2,OM=OBcos60=2,BD=2BM=4,BDO的面积是BDOM=42=4,同理FDO的面积是4;COD=60,OC=OD=4,COD是等边三角形,OCD=ODC=60,在RtCZO中,OC=4,OZ=OCsin60=2,S扇形OCDSCOD=42=4,阴影部分的面积是:4+4+4+4=,故答案为:点评:本题考查了正多边形与圆及扇形的面积的计算的应用,解题的关键是求出两个弓形和两个三角形面积,题目比较好,难度适中6. (2014山东聊城,第15题,3分)如图,圆锥的表面展开图由一扇形和一个圆组成,已知圆的面积为100,扇形的圆心角为120,这个扇形的面积为300考点:圆锥的计算;扇形面积的计算分析:首先根据底面圆的面积求得底面的半径,然后结合弧长公式求得扇形的半径,然后利用扇形的面积公式求得侧面积即可解答:解:底面圆的面积为100,底面圆的半径为10,扇形的弧长等于圆的周长为20,设扇形的母线长为r,则=20,解得:母线长为30,扇形的面积为rl=1030=300,故答案为:300点评:本题考查了圆锥的计算及扇形的面积的计算,解题的关键是牢记计算公式7. (2014浙江杭州,第16题,4分)点A,B,C都在半径为r的圆上,直线AD直线BC,垂足为D,直线BE直线AC,垂足为E,直线AD与BE相交于点H若BH=AC,则ABC所对的弧长等于r或r(长度单位)考点:弧长的计算;圆周角定理;相似三角形的判定与性质;特殊角的三角函数值专题:分类讨论分析:作出图形,根据同角的余角相等求出H=C,再根据两角对应相等,两三角形相似求出ACD和BHD相似,根据相似三角形对应边成比例列式求出,再利用锐角三角函数求出ABC,然后根据在同圆或等圆中,同弧所对的圆心角等于圆周角的2倍求出ABC所对的弧长所对的圆心角,然后利用弧长公式列式计算即可得解解答:解:如图1,ADBC,BEAC,H+DBH=90,C+DBH=90,H=C,又BDH=ADC=90,ACDBHD,=,BH=AC,=,ABC=30,ABC所对的弧长所对的圆心角为302=60,ABC所对的弧长=r如图2,ABC所对的弧长所对的圆心角为300,ABC所对的弧长=r故答案为:r或r点评:本题考查了弧长的计算,圆周角定理,相似三角形的判定与性质,特殊角的三角函数值,判断出相似三角形是解题的关键,作出图形更形象直观8.(2014遵义15(4分)有一圆锥,它的高为8cm,底面半径为6cm,则这个圆锥的侧面积是60cm2(结果保留)考点:圆锥的计算分析:先根据圆锥的底面半径和高求出母线长,圆锥的侧面积是展开后扇形的面积,计算可得解答:解:圆锥的母线=10cm,圆锥的底面周长2r=12cm,圆锥的侧面积=lR=1210=60cm2故答案为60点评:本题考查了圆锥的计算,圆锥的高和圆锥的底面半径圆锥的母线组成直角三角形,扇形的面积公式为lR9.(2014十堰16(3分)如图,扇形OAB中,AOB=60,扇形半径为4,点C在上,CDOA,垂足为点D,当OCD的面积最大时,图中阴影部分的面积为24考点:扇形面积的计算;二次函数的最值;勾股定理分析:由OC=4,点C在上,CDOA,求得DC=,运用SOCD=OD,求得OD=2时OCD的面积最大,运用阴影部分的面积=扇形AOC的面积OCD的面积求解解答:解:OC=4,点C在上,CDOA,DC=SOCD=OD=OD2(16OD2)=OD44OD2=(OD28)2+16当OD2=8,即OD=2时OCD的面积最大,DC=2,COA=45,阴影部分的面积=扇形AOC的面积OCD的面积=22=24,故答案为:24点评:本题主要考查了扇形的面积,勾股定理,解题的关键是求出OD=2时OCD的面积最大10. (2014江苏徐州,第13题3分)半径为4cm,圆心角为60的扇形的面积为cm2考点:扇形面积的计算分析:直接利用扇形面积公式求出即可解答:解:半径为4cm,圆心角为60的扇形的面积为:=(cm2)故答案为:点评:此题主要考查了扇形的面积公式应用,熟练记忆扇形面积公式是解题关键11. ( 2014福建泉州,第17题4分)如图,有一直径是米的圆形铁皮,现从中剪出一个圆周角是90的最大扇形ABC,则:(1)AB的长为1米;(2)用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为米考点:圆锥的计算;圆周角定理专题:计算题分析:(1)根据圆周角定理由BAC=90得BC为O的直径,即BC=,根据等腰直角三角形的性质得AB=1;(2)由于圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,则2r=,然后解方程即可解答:解:(1)BAC=90,BC为O的直径,即BC=,AB=BC=1;(2)设所得圆锥的底面圆的半径为r,根据题意得2r=,解得r=故答案为1,点评:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长也考查了圆周角定理12(2014浙江宁波,第18题4分)如图,半径为6cm的O中,C、D为直径AB的三等分点,点E、F分别在AB两侧的半圆上,BCE=BDF=60,连接AE、BF,则图中两个阴影部分的面积为 6 cm2考点:垂径定理;全等三角形的判定与性质;含30度角的直角三角形;勾股定理分析:作三角形DBF的轴对称图形,得到三角形AGE,三角形AGE的面积就是阴影部分的面积解答:解:如图作DBF的轴对称图形HAG,作AMCG,ONCE,DBF的轴对称图形HAG,ACGBDF,ACG=BDF=60,ECB=60,G、C、E三点共线,AMCG,ONCE,AMON,=,在RTONC中,OCN=60,ON=sinOCNOC=OC,OC=OA=2,ON=,AM=2,ONGE,NE=GN=GE,连接OE,在RTONE中,NE=,GE=2NE=2,SAGE=GEAM=22=6,图中两个阴影部分的面积为6,故答案为6点评:本题考查了平行线的性质,垂径定理,勾股定理的应用13.(2014呼和浩特,第11题3分)一个底面直径是80cm,母线长为90cm的圆锥的侧面展开图的圆心角的度数为160考点:圆锥的计算专题:计算题分析:根据圆锥的底面直径求得圆锥的侧面展开扇形的弧长,再利用告诉的母线长求得圆锥的侧面展开扇形的面积,再利用扇形的另一种面积的计算方法求得圆锥的侧面展开图的圆心角即可解答:解:圆锥的底面直径是80cm,圆锥的侧面展开扇形的弧长为:d=80,母线长90cm,圆锥的侧面展开扇形的面积为:lr=8090=3600,=3600,解得:n=160故答案为:160点评:本题考查了圆锥的有关计算,解决此类题目的关键是明确圆锥的侧面展开扇形与圆锥的关系14.(2014德州,第15题4分)如图,正三角形ABC的边长为2,D、E、F分别为BC、CA、AB的中点,以A、B、C三点为圆心,半径为1作圆,则圆中阴影部分的面积是考点:扇形面积的计算;等边三角形的性质;相切两圆的性质分析:观察发现,阴影部分的面积等于正三角形ABC的面积减去三个圆心角是60,半径是2的扇形的面积解答:解:连接ADABC是正三角形,BD=CD=2,BAC=B=C=60,ADBCAD=阴影部分的面积=23=故答案为:点评:此题主要考查了扇形面积的计算,能够正确计算正三角形的面积和扇形的面积正三角形的面积等于边长的平方的倍,扇形的面积=15. (2014江苏盐城,第17题3分)如图,在矩形ABCD中,AB=,AD=1,把该矩形绕点A顺时针旋转度得矩形ABCD,点C落在AB的延长线上,则图中阴影部分的面积是考点:旋转的性质;矩形的性质;扇形面积的计算分析:首先根据题意利用锐角三角函数关系得出旋转角的度数,进而求出SABC,S扇形BAB,即可得出阴影部分面积解答:解:在矩形ABCD中,AB=,AD=1,tanCAB=,AB=CD=,AD=BC=,CAB=30,BAB=30,SABC=1=,S扇形BAB=,S阴影=SABCS扇形BAB=故答案为:点评:此题主要考查了矩形的性质以及旋转的性质以及扇形面积公式等知识,得出旋转角的度数是解题关键16(2014四川遂宁,第13题,4分)已知圆锥的底面半径是4,母线长是5,则该圆锥的侧面积是20(结果保留)考点:圆锥的计算分析:圆锥的侧面积=底面周长母线长2解答:解:底面圆的半径为4,则底面周长=8,侧面面积=85=20故答案为:20点评:本题考查了圆锥的计算,利用了圆的周长公式和扇形面积公式求解17(2014四川内江,第25题,6分)通过对课本中硬币滚动中的数学的学习,我们知道滚动圆滚动的周数取决于滚动圆的圆心运动的路程(如图)在图中,有2014个半径为r的圆紧密排列成一条直线,半径为r的动圆C从图示位置绕这2014个圆排成的图形无滑动地滚动一圈回到原位,则动圆C自身转动的周数为2014考点:弧长的计算;相切两圆的性质;轨迹分析:它从A位置开始,滚过与它相同的其他2014个圆的上部,到达最后位置则该圆共滚过了2014段弧长,其中有2段是半径为2r,圆心角为120度,2012段是半径为2r,圆心角为60度的弧长,所以可求得解答:解:弧长=1314r,又因为是来回所以总路程为:13142=2628所以动圆C自身转动的周数为:2628r2r=1314故答案为:1314点评:本题考查了弧长的计算关键是理解该点所经过的路线三个扇形的弧长18(2014广州,第14题3分)一个几何体的三视图如图4,根据图示的数据计算该几何体的全面积为_(结果保留)【考点】三视图的考察、圆锥体全面积的计算方法【分析】从三视图得到该几何体为圆锥体,全面积=侧面积+底面积,底面积为圆的面积为:,侧面积为扇形的面积,首先应该先求出扇形的半径R,由勾股定理得,则侧面积,全面积【答案】19. (2014黑龙江牡丹江, 第17题3分)如图,如果从半径为3cm的圆形纸片上剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面半径是2cm第2题图考点:圆锥的计算分析:易求得扇形的弧长,除以2即为圆锥的底面半径解答:解:扇形的弧长为:=4cm,圆锥的底面半径为:42=2cm,故答案为:2点评:考查了扇形的弧长公式;圆的周长公式;圆锥的体积公式,用到的知识点为:圆锥的弧长等于底面周长20. (2014湖北荆门,第16题3分)如图,在ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,延长BA与A相交于点F若的长为,则图中阴影部分的面积为第3题图考点:切线的性质;平行四边形的性质;弧长的计算;扇形面积的计算分析:求图中阴影部分的面积,就要从图中分析阴影部分的面积是由哪几部分组成的很显然图中阴影部分的面积=ACD的面积扇形ACE的面积,然后按各图形的面积公式计算即可解答:解:连接AC,DC是A的切线,ACCD,又AB=AC=CD,ACD是等腰直角三角形,CAD=45,又四边形ABCD是平行四边形,ADBC,CAD=ACB=45,又AB=AC,ACB=B=45,CAD=45,CAD=45,的长为,解得:r=2,S阴影=SACDS扇形ACD=故答案为:点评:本题主要考查了扇形的面积计算方法,不规则图形的面积通常转化为规则图形的面积的和差21. (2014黑龙江绥化,第8题3分)一个扇形的圆心角为120,半径为3,则这个扇形的面积为3(结果保留)考点:扇形面积的计算专题:计算题;压轴题分析:根据扇形公式S扇形=,代入数据运算即可得出答案解答:解:由题意得,n=120,R=3,故S扇形=3故答案为:3点评:此题考查了扇形的面积计算,属于基础题,解答本题的关键是熟练掌握扇形的面积公式,另外要明白扇形公式中,每个字母所代表的含义22. (2014河北,第19题3分)如图,将长为8cm的铁丝尾相接围成半径为2cm的扇形则S扇形=4cm2考点:扇形面积的计算分析:根据扇形的面积公式S扇形=弧长半径求出即可解答:解:由题意知,弧长=8cm2cm2=4 cm,扇形的面积是4cm2cm=4cm2,故答案为:4点评:本题考查了扇形的面积公式的应用,主要考查学生能否正确运用扇形的面积公式进行计算,题目比较好,难度不大23(2014四川广安,第16题3分)如图,在直角梯形ABCD中,ABC=90,上底AD为,以对角线BD为直径的O与CD切于点D,与BC交于点E,且ABD为30则图中阴影部分的面积为(不取近似值)考点:切线的性质;直角梯形;扇形面积的计算分析:连接OE,根据ABC=90,AD=,ABD为30,可得出AB与BD,可证明OBE为等边三角形,即可得出C=30阴影部分的面积为直角梯形ABCD的面积三角形ABD的面积三角形OBE的面积扇形ODE的面积解答:解:连接OE,过点O作OFBE于点FABC=90,AD=,ABD为30,BD=2,AB=3,OB=OE,DBC=60,OF=,CD为O的切线,BDC=90,C=30,BC=4,S阴影=S梯形ABCDSABDSOBES扇形ODE=故答案为点评:本题考查了切线的性质、直角梯形以及扇形面积的计算,要熟悉扇形的面积公式24(2014四川绵阳,第16题4分)如图,O的半径为1cm,正六边形ABCDEF内接于O,则图中阴影部分面积为cm2(结果保留)考点:正多边形和圆分析:根据题意得出COWABW,进而得出图中阴影部分面积为:S扇形OBC进而得出答案解答:解:如图所示:连接BO,CO,正六边形ABCDEF内接于O,AB=BC=CO=1,ABC=120,OBC是等边三角形,COAB,在COW和ABW中,COWABW(AAS),图中阴影部分面积为:S扇形OBC=故答案为:点评:此题主要考查了正多边形和圆以及扇形面积求法,得出阴影部分面积=S扇形OBC是解题关键25(2014重庆A,第16题4分)如图,OAB中,OA=OB=4,A=30,AB与O相切于点C,则图中阴影部分的面积为4(结果保留)考点:切线的性质;含30度角的直角三角形;扇形面积的计算专题:计算题分析:连接OC,由AB为圆的切线,得到OC垂直于AB,再由OA=OB,利用三线合一得到C为AB中点,且OC为角平分线,在直角三角形AOC中,利用30度所对的直角边等于斜边的一半求出OC的长,利用勾股定理求出AC的长,进而确定出AB的长,求出AOB度数,阴影部分面积=三角形AOB面积扇形面积,求出即可解答:解:连接OC,AB与圆O相切,OCAB,OA=OB,AOC=BOC,A=B=30,在RtAOC中,A=30,OA=4,OC=OA=2,AOC=60,AOB=120,AC=2,即AB=2AC=4,则S阴影=SAOBS扇形=42=4故答案为:4点评:此题考查了切线的性质,含30度直角三角形的性质,以及扇形面积计算,熟练掌握切线的性质是解本题的关键26(2014黑龙江哈尔滨,第18题3分)一个底面直径为10cm,母线长为15cm的圆锥,它的侧面展开图圆心角是120度考点:圆锥的计算分析:利用底面周长=展开图的弧长可得解答:解:底面直径为10cm,底面周长为10,根据题意得10=,解得n=120故答案为120点评:考查了圆锥的计算,解答本题的关键是有确定底面周长=展开图的弧长这个等量关系,然后由扇形的弧长公式和圆的周长公式求值三、解答题1. ( 2014广东,第24题9分)如图,O是ABC的外接圆,AC是直径,过点O作ODAB于点D,延长DO交O于点P,过点P作PEAC于点E,作射线DE交BC的延长线于F点,连接PF(1)若POC=60,AC=12,求劣弧PC的长;(结果保留)(2)求证:OD=OE;(3)求证:PF是O的切线考点:切线的判定;弧长的计算分析:(1)根据弧长计算公式l=进行计算即可;(2)证明POEADO可得DO=EO;(3)连接AP,PC,证出P
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- Sirtinol-Standard-生命科学试剂-MCE
- GBR-1342-生命科学试剂-MCE
- 2025年城市绿化堡坎施工与生态质量维护服务协议
- 2025年度国际电子元件进出口贸易合同模板
- 2025年在线教育平台年度会员课程支持及市场推广服务合同
- 2025年医院租赁合同包括医疗设备维护及应急管理服务条款
- 2025年度合伙投资购房合作争议处理专项合同范本
- 2025年冷链物流服务质量保障协议示范文本
- 2025年城市轨道交通隧道内全息投影广告制作与安装服务合同
- 2025年新型耐候钢复合堡坎工程勘察设计及施工一体化服务合同
- 2025-2030乐器产业规划专项研究报告
- 电视广播网络安全与数据保护技术考核试卷
- 防造假培训课件视频教程
- 2025届苏锡常镇高三语文一模作文解读及范文:我会洗碗呀
- 义务消防队组建方案
- 中邮保险笔试题型及答案
- 2025-2030中国ARM核心板行业市场现状分析及竞争格局与投资发展研究报告
- 脐灸技术操作流程图及考核标准
- 给药错误PDCA课件
- 医美注射培训
- 2025至2031年中国缓冲体总成行业投资前景及策略咨询研究报告
评论
0/150
提交评论