




已阅读5页,还剩34页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一章 1 3充分条件 必要条件与命题的四种形式 1 3 2命题的四种形式 1 了解四种命题的概念 会写出所给命题的逆命题 否命题和逆否命题 2 认识四种命题之间的关系以及真假性之间的联系 3 会利用命题的等价性解决问题 学习目标 题型探究 问题导学 内容索引 当堂训练 问题导学 思考1 知识点一四种命题的概念 给出以下四个命题 1 当x 2时 x2 3x 2 0 2 若x2 3x 2 0 则x 2 3 若x 2 则x2 3x 2 0 4 若x2 3x 2 0 则x 2 你能说出命题 1 与其他三个命题的条件与结论有什么关系吗 答案 命题 1 的条件和结论与命题 2 的条件和结论恰好互换了 命题 1 的条件与结论恰好是命题 3 条件的否定和结论的否定 命题 1 的条件和结论恰好是命题 4 结论的否定和条件的否定 梳理对命题的条件和结论进行 换位 和 换质 否定 后 可以构成四种不同形式的命题 1 原命题 2 逆命题 换位 3 否命题 换质 4 逆否命题 换位 又 换质 如果p 则q 如果q 则p 如果綈p 则綈q 如果綈q 则綈p 知识点二命题的四种形式之间的关系 思考1 为了书写方便常把p与q的否定分别记作 綈p 和 綈q 如果原命题是 如果p 则q 那么它的逆命题 否命题 逆否命题该如何表示 答案 逆命题 如果q 则p 否命题 如果綈p 则綈q 逆否命题 如果綈q 则綈p 思考2 原命题的否命题与原命题的逆否命题之间是什么关系 原命题的逆命题与其逆否命题之间是什么关系 原命题的逆命题与其否命题呢 答案 互逆 互否 互为逆否 梳理四种命题间的相互关系 如果p 则q 如果q 则p 如果綈p 则綈q 如果綈q 则綈p 知识点三四种命题的真假关系 思考1 知识点一的 思考 中四个命题的真假性是怎样的 答案 1 真命题 2 假命题 3 假命题 4 真命题 思考2 如果原命题是真命题 它的逆命题是真命题吗 它的否命题呢 它的逆否命题呢 答案 原命题为真 其逆命题不一定为真 其否命题不一定为真 其逆否命题一定是真命题 梳理 1 在原命题的逆命题 否命题 逆否命题中 一定与原命题真假性相同的是 2 两个命题互为逆命题或互为否命题时 它们的真假性 逆否命题 没有关系 题型探究 类型一四种命题及其相互关系 命题角度1四种命题的概念例1写出下列命题的逆命题 否命题和逆否命题 1 若x a 则x a b 逆命题 若x a b 则x a 否命题 若x a 则x a b 逆否命题 若x a b 则x a 解答 逆命题 若a b是偶数 则a b都是偶数 否命题 a b不都是偶数 则a b不是偶数 逆否命题 若a b不是偶数 则a b不都是偶数 2 若a b都是偶数 则a b是偶数 解答 逆命题 在 abc中 若a b 则a b 否命题 在 abc中 若a b 则a b 逆否命题 在 abc中 若a b 则a b 3 在 abc中 若a b 则a b 解答 四种命题的转换方法 1 交换原命题的条件和结论 所得命题是原命题的逆命题 2 同时否定原命题的条件和结论 所得命题是原命题的否命题 3 交换原命题的条件和结论 并且同时否定 所得命题是原命题的逆否命题 反思与感悟 跟踪训练1命题 若函数f x logax a 0 a 1 在其定义域内是减函数 则loga20 a 1 在其定义域内不是减函数b 若loga2 0 则函数f x logax a 0 a 1 在其定义域内不是减函数c 若loga20 a 1 在其定义域内是减函数d 若loga2 0 则函数f x logax a 0 a 1 在其定义域内是减函数 答案 解析 直接根据逆否命题的定义 将其条件与结论进行否定 再互换 值得注意的是 是减函数 的否定不能写成 是增函数 而应写成不是减函数 命题角度2四种命题的相互关系例2若命题p 若x y 0 则x y互为相反数 的否命题为q 命题q的逆命题为r 则r与p的逆命题的关系是a 互为逆命题b 互为否命题c 互为逆否命题d 同一命题 答案 解析 已知命题p 若x y 0 则x y互为相反数 命题p的否命题q为 若x y 0 则x y不互为相反数 命题q的逆命题r为 若x y不互为相反数 则x y 0 r是p的逆否命题 r是p的逆命题的否命题 故选b 反思与感悟 判断四种命题之间四种关系的两种方法 1 利用四种命题的定义判断 2 巧用 逆 否 两字进行判断 如 逆命题 与 逆否命题 中不同有 否 一个字 是互否关系 而 逆命题 与 否命题 中不同有 逆 否 二字 其关系为逆否关系 跟踪训练2已知命题p的逆命题是 若实数a b满足a 1且b 2 则a b 4 则命题p的否命题是 答案 解析 由命题p的逆命题与其否命题互为逆否命题可得 若实数a b满足a b 4 则a 1或b 2 类型二四种命题的真假判断 例3有以下命题 若xy 1 则x y互为倒数 的逆命题 面积相等的三角形全等 的否命题 若m 1 则x2 2x m 0有实数解 的逆否命题 若a b b 则a b 的逆否命题 其中真命题为a b c d 答案 解析 显然正确 对于 若a b b 则b a 所以原命题为假 故它的逆否命题也为假 反思与感悟 原命题与逆否命题总是具有相同的真假性 与逆命题或否命题的真假性没有关系 逆命题与否命题也总是具有相同的真假性 跟踪训练3命题 若a b 则ac2 bc2 a b c r 与它的逆命题 否命题 逆否命题中 真命题的个数为a 0b 2c 3d 4 答案 解析 命题 若a b 则ac2 bc2 a b c r 是假命题 则其逆否命题是假命题 该命题的逆命题为 若ac2 bc2 则a b a b c r 是真命题 则其否命题是真命题 故选b 类型三等价命题的应用 例4判断命题 已知a x为实数 若关于x的不等式x2 2a 1 x a2 2 0的解集非空 则a 1 的逆否命题的真假 解答 方法一原命题的逆否命题 已知a x为实数 若a 1 则关于x的不等式x2 2a 1 x a2 2 0的解集为 判断如下 抛物线y x2 2a 1 x a2 2的开口向上 令x2 2a 1 x a2 2 0 则 2a 1 2 4 a2 2 4a 7 因为a 1 所以4a 7 0 即关于x的不等式x2 2a 1 x a2 2 0的解集为 故此命题为真命题 方法二利用原命题的真假去判断逆否命题的真假 因为关于x的不等式x2 2a 1 x a2 2 0的解集非空 所以 2a 1 2 4 a2 2 0 所以原命题为真 故其逆否命题为真 解答 先判断原命题的真假如下 因为a x为实数 关于x的不等式x2 2a 1 x a2 2 0的解集为r 且抛物线y x2 2a 1 x a2 2的开口向上 所以 2a 1 2 4 a2 2 4a 7 0 所以原命题是真命题 因为互为逆否命题的两个命题同真同假 所以原命题的逆否命题为真命题 反思与感悟 由于原命题和它的逆否命题有相同的真假性 即互为逆否命题的两个命题具有等价性 所以我们在直接证明某一个命题为真命题有困难时 可以通过证明它的逆否命题为真命题来间接地证明原命题为真命题 跟踪训练4证明 若a2 4b2 2a 1 0 则a 2b 1 证明 若a2 4b2 2a 1 0 则a 2b 1 的逆否命题为 若a 2b 1 则a2 4b2 2a 1 0 a 2b 1 a2 4b2 2a 1 2b 1 2 4b2 2 2b 1 1 4b2 1 4b 4b2 4b 2 1 0 命题 若a 2b 1 则a2 4b2 2a 1 0 为真命题 由原命题与逆否命题具有相同的真假性可知 结论正确 当堂训练 1 命题 若a a 则b b 的否命题是a 若a a 则b bb 若a a 则b bc 若b b 则a ad 若b b 则a a 答案 1 2 3 4 5 解析 命题 若p 则q 的否命题是 若非p 则非q 与 互为否定形式 1 2 3 4 5 原命题结论 1 x 1 的否定是 x 1或x 1 原命题条件 x2 1 的否定是 x2 1 故逆否命题是如果x 1或x 1 则x2 1 2 命题 如果x21或x1d 如果x 1或x 1 则x2 1 答案 解析 1 2 3 4 5 3 如果一个命题的否命题是真命题 那么这个命题的逆命题是a 真命题b 假命题c 不一定是真命题d 不一定是假命题 答案 解析 由否命题与逆命题互为逆否命题 可知这个命题的逆命题是真命题 4 下列命题 全等三角形的面积相等 的逆命题 正三角形的三个内角均为60 的否命题 若k 0 则方程x2 2k 1 x k 0必有两相异实数根 的逆否命题 其中真命题的个数是a 0b 1c 2d 3 1 2 3 4 5 的逆命题 面积相等的三角形是全等三角形 是假命题 的否命题 不是正三角形的三个内角不全为60 为真命题 当k0 方程有两相异实根 原命题与其逆否命题均为真命题 答案 解析 1 2 3 4 5 5 已知命题 若m 1 x m 1 则1 x 2 的逆命题为真命题 则m的取值范围是 答案 命题 若m 1 x m
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 IEC SRD 63302-1:2025 EN Smart city use case collection and analysis – Intelligent operations centre for smart cities – Part 1: High-level analysis
- 【正版授权】 IEC TS 62565-4-4:2025 EN Nanomanufacturing – Product specification – Part 4-4: Nanophotonic products – Blank detail specification: Quantum dot enabled light conversion films
- 2025年涂料工程师职业资格考试试题及答案
- 2025年物理学专业考试试卷及答案
- 2025年房地产开发与经营管理考试模拟试卷及答案
- 2025年广告学专业考试试卷及答案
- 2025年道路桥梁工程师资格考试卷及答案
- 2025年大数据应用与数据分析基础考试题及答案
- 2025年广告设计与传播专业考试题及答案
- 2025年家庭教育与亲子关系考题及答案
- 家校携手决战中考-九年级家长会课件
- 苏州昆山鹿城村镇银行2023年招聘人员笔试历年难、易错考点试题含答案附详解
- 2023年高考英语模拟卷(天津专用)(解析版)
- 山西煤炭运销集团锦瑞煤业有限公司煤炭资源开发利用、地质环境保护与土地复垦方案
- 《国家中药饮片炮制规范》全文
- 教育公共基础知识整理版
- Q-SY 06351-2020 输气管道计量导则
- 铁路工程定额电子版(Excel版)
- 如何预防与处理劳动争议培训课件
- JJG 1148-2022电动汽车交流充电桩(试行)
- GB/T 31586.2-2015防护涂料体系对钢结构的防腐蚀保护涂层附着力/内聚力(破坏强度)的评定和验收准则第2部分:划格试验和划叉试验
评论
0/150
提交评论