灰度阀值变换及二值化.docx_第1页
灰度阀值变换及二值化.docx_第2页
灰度阀值变换及二值化.docx_第3页
灰度阀值变换及二值化.docx_第4页
灰度阀值变换及二值化.docx_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

当图像的像素点的灰度大于T的时候,设置这个点为全黑,要不然为全白。这样可以只选择我们感兴趣的领域。im2bw(I,level); %阈值法从灰度图、RGB图创建二值图。level为人工设定阈值(threshold value),范围为0 ,1最大类间方差法(OTSU算法)最大类间方差法是由日本学者大津(Nobuyuki Otsu)于1979年提出的,是一种自适应的阈值确定的方法,又叫大律法,简称OTSU。它是按图像的灰度特性,将图像分成背景和目标2部分。背景和目标之间的类间方差越大,说明构成图像的2部分的差别越大,当部分目标错分为背景或部分背景错分为目标都会导致2部分差别变小。因此,使类间方差最大的分割意味着错分概率最小。在Matlab中,graythresh函数使用最大类间方差法获得图像的阈值。(注意标点要换一下)I = imread(beauty_yellowflowers.jpg);thresh= graythresh(I);%自适应设置阀值bw1 = im2bw(I, thresh);bw2 = im2bw(I, 130/255);%手工设置阀值subplot(1,3,1);imshow(I);title(original)subplot(1,3,2);imshow(bw1);title(autoset_thresh);subplot(1,3,3);imshow(bw2);title(thresh=130);最小分类错误全局二值化算法 (kittlerMet算法)函数源代码:function imagBW = kittlerMet(imag)% KITTLERMET binarizes a gray scale image imag into a binary image% Input:% imag: the gray scale image, with black foreground(0), and white% background(255).% Output:% imagBW: the binary image of the gray scale image imag, with kittlers% minimum error thresholding algorithm.% Reference:% J. Kittler and J. Illingworth. Minimum Error Thresholding. Pattern% Recognition. 1986. 19(1):41-47MAXD = 100000;imag = imag(:,:,1);counts, x = imhist(imag); % counts are the histogram. x is the intensity level.GradeI = length(x); % the resolusion of the intensity. i.e. 256 for uint8.J_t = zeros(GradeI, 1); % criterion functionprob = counts ./ sum(counts); % Probability distributionmeanT = x * prob; % Total mean level of the picture% Initializationw0 = prob(1); % Probability of the first classmiuK = 0; % First-order cumulative moments of the histogram up to the kth level.J_t(1) = MAXD;n = GradeI-1;for i = 1 : n w0 = w0 + prob(i+1); miuK = miuK + i * prob(i+1); % first-order cumulative moment if (w0 1-eps) J_t(i+1) = MAXD; % T = i else miu1 = miuK / w0; miu2 = (meanT-miuK) / (1-w0); var1 = (0 : i)-miu1).2) * prob(1 : i+1); var1 = var1 / w0; % variance var2 = (i+1 : n)-miu2).2) * prob(i+2 : n+1); var2 = var2 / (1-w0); if var1 eps & var2 eps % in case of var1=0 or var2 =0 J_t(i+1) = 1+w0 * log(var1)+(1-w0) * log(var2)-2*w0*log(w0)-2*(1-w0)*log(1-w0); else J_t(i+1) = MAXD; end endendminJ = min(J_t);index = find(J_t = minJ);th = mean(index);th = (th-1)/nimagBW = im2bw(imag, th);% figure, imshow(imagBW), title(kittler binary);MATLAB程序:I = imread(beauty_yellowflowers.jpg);imagSW = kittlerMet(I);%Kittler 算法bw1 = im2bw(I, 130/255);%手工设置阀值subplot(1,3,1);imshow(I);title(original);subplot(1,3,2);imshow(imagSW);title(kittler binary);subplot(1,3,3);imshow(bw1); title(thresh=130);结果:Niblack二值化算法:Niblack二值化算法是比较简单的局部阈值方法,阈值的计算公式是T = m + k*v,其中m为以该像素点为中心的区域的平均灰度值,v是该区域的标准差,k是一个系数。matlab程序如下:I = imread( beauty_yellowflowers.jpg );I = rgb2gray(I);w = 2;% max = 0; min = 0; m,n = size(I); T = zeros(m ,n ); %for i = (w + 1):(m - w) for j = (w + 1):(n - w) sum = 0; for k = -w:w for l = -w:w sum = sum + uint32(I(i + k,j + l); end end average = double(sum) /(2*w+1)*(2*w+1); s = 0; for k = -w:w for l = -w:w s = s + (uint32(I(i + k,j + l) - average)*(uint32(I(i + k,j + l) - average); end end s= sqrt(double(s)/(2*w+1)*(2*w+1); T(i,j) = average + 0.2*s; end end for i = 1:m for j = 1:n if I(i,j) T(i,j) I(i,j) = uint8(255); else I(i,j) = uint8(0); end end end imshow(I); 此种算法速度很慢,一直都没等到结果,也有可能是程序中有死循环,费解改进的算法如下:(也挺费时间的,效果不好)I = imread( beauty_yellowflowers.jpg );I = rgb2gray(I);m,n = size(I);block = 10;ver = floor(m/block);hor = floor(n/block);T = zeros(m,n);for b_ver = 1:block for b_hor = 1: block% T(ver * (b_ver - 1)+1) : (ver *b_ver),(hor *(b_hor - 1) + 1):(hor*b_hor) = otsu(I(ver * (b_ver - 1)+1) : (ver *b_ver),(hor *(b_hor - 1) + 1):(hor*b_hor); t = 0; for i = (ver * (b_ver - 1)+1) : (ver * b_ver) for j = (hor * (b_hor - 1) + 1):(hor * b_hor) t = t + uint32(I(i,j); end end t = double(t)/(ver * hor); std_deviation = 0; for i = (ver * (b_ver - 1)+1) : (ver * b_ver) for j = (hor * (b_hor - 1) + 1):(hor * b_hor) std_deviation = std_deviation + (uint32(I(i,j) - t)*(uint32(I(i,j) - t); end end std_deviation = sqrt(double(std_deviation)/(ver*hor); thr = t +

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论