




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高二数学求曲线的轨迹方程刘明华一. 教学内容:求曲线的轨迹方程二. 学习目标求曲线的方程是解析几何中的重点,也是难点,是解答题取材的源泉。求曲线的轨迹方程的常用方法很重要。三. 考点分析1、求曲线方程的步骤:(1)建立适当的坐标系,用有序实数对(x,y)表示曲线上任意一点M的坐标;(2)写出适合条件p的点M的集合P=Mp(M);(3)用坐标表示条件p(M),列出方程f(x,y)=0;(4)化方程f(x,y)=0为最简形式;(5)说明以化简后的方程的解为坐标的点都在曲线上。2、求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、待定系数法、参数法、交轨法。(1)直接法:将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程,即直接通过建立x、y之间的关系,构成F(x,y)0,此法是求轨迹的最基本的方法。(2)定义法:运用解析几何中一些常用定义(如椭圆、双曲线、抛物线、圆等), 可从曲线定义出发直接写出轨迹方程,或从曲线定义出发建立关系,从而求出轨迹方程。注:用定义法求曲线方程,灵活运用题设重要条件,确定动点满足的等量关系,结合圆锥曲线定义确定方程的类型。步骤:列出等量关系式;由等式的几何意义,结合圆锥曲线的定义确定轨迹的形状;写出方程。利用“定义法”求轨迹方程的关键:找出动点满足的等量关系。(3)代入法(相关点法或转移法):动点所满足的条件不易表述或求出,但形成的轨迹的动点P(x,y)却随着另一动点Q(x1,y1)的运动而 有规律的运动,且动点Q的轨迹为给定或容易求得,则可先将x1,y1 表示为x、y的式子,再代入Q的轨迹方程,然后整理得P的轨迹方程。(4)待定系数法:所求曲线是所学过的曲线:如直线,圆锥曲线等,可先根据条件列出所求曲线的方程,再由条件确定其待定系数,代回所列的方程即可;(5)参数法:当动点P(x,y)坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将x、y均用一中间变量(参数)表示,得参数方程,再消去参数得普通方程(6)交轨法:求两动曲线交点的轨迹时,可由方程直接消去参数,例如求两动直线的交点时常用此法,也可以引入参数来建立这些曲线的联系,然后消去参数得到轨迹方程。要注意区别“轨迹”与“轨迹方程”是两个不同的概念,若是求轨迹则不仅要求出方程,而且还需说明和讨论所求轨迹是什么样的图形,在何处,即图形的形状,位置,大小都需说明,讨论清楚。【典型例题】 例1. 已知、是两个定点,且的周长等于16,求顶点 的轨迹方程分析:由的周长等于16,可知,点到、两点的距离的和是常数因此,点 的轨迹是以 、为焦点的椭圆,可适当建立坐标系求出方程解:如图,建立坐标系,使轴经过点、,原点与的中点重合由已知,有即点的轨迹是椭圆,且 ,但当点在直线 上,即时,、三点不能构成三角形,所以点的轨迹方程是点评:(1)求出曲线的方程后,要注意检查一下方程的曲线上的点是否都符合题意,如果不符合题意的点,应在所得方程后注明限制条件(2)在求解时,如果题设条件中未给出坐标系时,要建立适当的坐标系,通常取定直线为坐标轴,定点或线段的中点为坐标原点,使其具有对称性,使曲线方程尽可能地简单。例2. 如图所示,已知P(4,0)是圆x2+y2=36内的一点,A、B是圆上两动点,且满足APB=90,求矩形APBQ的顶点Q的轨迹方程。 命题意图:本题主要考查利用“相关点代入法”求曲线的轨迹方程:错解分析:欲求Q的轨迹方程,应先求R的轨迹方程,若学生思考不深刻,发现不了问题的实质,很难解决此题技巧与方法:对某些较复杂的探求轨迹方程的问题,可先确定一个较易于求得的点的轨迹方程,再以此点作为主动点,所求的轨迹上的点为相关点,求得轨迹方程解:设AB的中点为R,坐标为(x,y),则在RtABP中,|AR|=|PR| 又因为R是弦AB的中点,依垂径定理:在RtOAR中,|AR|2=|AO|2|OR|2=36(x2+y2)又|AR|=|PR|=所以有(x4)2+y2=36(x2+y2),即x2+y24x10=0因此点R在一个圆上,而当R在此圆上运动时,Q点即在所求的轨迹上运动设Q(x,y),R(x1,y1),因为R是PQ的中点,所以x1=,代入方程x2+y24x10=0,得10=0整理得:x2+y2=56,这就是所求的轨迹方程例3. 已知中心在原点,焦点在x轴上的椭圆与直线交于、两点,M为AB中点,的斜率为0.25,椭圆的短轴长为2,求椭圆的方程解:由题意,设椭圆方程为,由,得, ,为所求点评:(1)此题求椭圆方程采用的是待定系数法;(2)直线与曲线的综合问题,经常要借用根与系数的关系,来解决弦长、弦中点、弦斜率问题例4. 已知A、B为两定点,动点M到A与到B的距离比为常数,求点M的轨迹方程,并注明轨迹是什么曲线 解:建立坐标系如图所示,设|AB|=2a,则A(a,0),B(a,0)设M(x,y)是轨迹上任意一点则由题设,得=,坐标代入,得=,化简得(12)x2+(12)y2+2a(1+2)x+(12)a2=0(1)当=1时,即|MA|=|MB|时,点M的轨迹方程是x=0,点M的轨迹是直线(y轴)(2)当1时,点M的轨迹方程是x2+y2+x+a2=0 点M的轨迹是以(,0)为圆心,为半径的圆感悟:本题所用的方法是直接法,在所求得的曲线方程中含参数,应通过对参数的讨论来说明轨迹的类型,即是什么曲线,它的位置,形状,大小如何,此题易忽视讨论=1的情况。建立适当的坐标系,用直接法求得轨迹方程,再由值的变化讨论方程所表示的曲线。例5. 设点A和B为抛物线 y2=4px(p0)上原点以外的两个动点,已知OAOB,OMAB,求点M的轨迹方程,并说明它表示什么曲线命题意图:本题主要考查“参数法”求曲线的轨迹方程技巧与方法:将动点的坐标x、y用其他相关的量表示出来,然后再消掉这些量,从而就建立了关于x、y的关系:解法一:设OA的方程为,代入y2=4px得则OB的方程为,代入y2=4px得AB的方程为,过定点,由OMAB,得M在以ON为直径的圆上(O点除外)故动点M的轨迹方程为x2+y24px=0(x0),它表示以(2p,0)为圆心,以2p为半径的圆,去掉坐标原点。解法二:设M(x,y) (x0),OA的方程为,代入y2=4px得则OB的方程为,代入y2=4px得由OMAB,得M既在以OA为直径的圆 上,又在以OB为直径的圆 上(O点除外),+得 x2+y24px=0(x0)故动点M的轨迹方程为x2+y24px=0(x0),它表示以(2p,0)为圆心,以2p为半径的圆,去掉坐标原点【模拟试题】一、选择题(本大题共6小题,每小题5分,共30分)1. 已知椭圆的焦点是F1、F2,P是椭圆上的一个动点,如果延长F1P到Q,使得|PQ|=|PF2|,那么动点Q的轨迹是( )A. 圆B. 椭圆C. 双曲线的一支D. 抛物线2. 设A1、A2是椭圆=1的长轴的两个端点,P1、P2是垂直于A1A2的弦的端点,则直线A1P1与A2P2交点的轨迹方程为( )A. B. C. D. 3. 圆心在抛物线上,且与轴和该抛物线的准线都相切的一个圆的方程是:( )A. B. C. D. 4. 中心在原点的双曲线一个焦点为,直线与其
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 多发性硬化症缓解期护理查房
- 教师招聘之《幼儿教师招聘》押题模拟及答案详解【网校专用】
- 太原春游活动方案策划招聘
- 2025年公安辅警招聘知识考试题库及参考答案
- 常熟安全员培训课件
- 【高考模拟】2026届普通高等学校招生全国统一考试最 新数学模拟试卷(含解析)
- 辽宁省沈文新高考研究联盟2026届高三上学期期初质量监测试题 政治试卷(含答案)
- 2025四川绵阳市中级人民法院招聘合同制审判辅助人员19人考试备考试卷【附答案】
- 北京景泰西里危改工程施工组织设计方案
- 2024年中国工商银行江西省分行招聘真题
- oa长期抗炎治疗的重要性
- 2022年湖北咸宁市总工会招聘工会工作协理员笔试备考题库及答案解析
- 前台案例-北侧弱覆盖优化
- 检验科标本采集手册
- 毒品与毒品的危害课件
- 空转耕地占用税和契税课件
- 物理因子治疗技术 压力疗法课件
- 烧结基础知识课件
- 锅炉煮炉方案
- 合肥工业大学推免生综合评价加分细则
- 数学人教A版(2019)必修第一册1.3集合的基本运算(共17张ppt)
评论
0/150
提交评论