




已阅读5页,还剩37页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第二章 圆锥曲线与方程 2 4抛物线 2 4 1抛物线及其标准方程 自主预习学案 1 抛物线定义平面内与一个定点f和一条定直线l 定点不在定直线上 的点的轨迹叫做抛物线 叫做抛物线的焦点 叫做抛物线的准线 2 抛物线的标准方程的几种形式同一条抛物线在坐标平面内的位置不同 方程也不同 顶点在原点 以坐标轴为对称轴的抛物线有四种形式 请依据这四种抛物线的图形写出标准方程 焦点坐标及准线方程 距离相等 定点f 定直线l y2 2px p 0 y2 2px p 0 x2 2py p 0 x2 2py p 0 3 焦半径过抛物线焦点的直线与抛物线相交 被抛物线所截得的线段 称为抛物线的 4 通径通过抛物线的焦点作垂直于坐标轴的直线交抛物线于a b两点 线段ab称为抛物线的通径 通径 ab 的长等于 焦点弦 2p d d a 4 抛物线y2 4x上的点p到焦点的距离是5 则p点坐标是 4 4 5 若点p在抛物线y2 4x上 点a 5 3 f为抛物线的焦点 则 pa pf 的最小值为 解析 如图 抛物线y2 4x的准线l的方程为x 1 焦点f 1 0 过点a作aa l a 为垂足 aa 与抛物线的交点p pf pa pf pa 的最小值为 aa 6 6 互动探究学案 命题方向1 求抛物线的焦点及准线 设抛物线的方程为y ax2 a 0 求抛物线的焦点坐标与准线方程 典例1 规律总结 求抛物线的焦点及准线方程的步骤 1 把抛物线解析式化为标准方程形式 2 明确抛物线开口方向 3 求出抛物线标准方程中参数p的值 4 写出抛物线的焦点坐标或准线方程 跟踪练习1 已知抛物线y2 2px p 0 的准线经过点 1 1 则该抛物线焦点坐标为 a 1 0 b 1 0 c 0 1 d 0 1 b 命题方向2 求抛物线的标准方程 求满足下列条件的抛物线的标准方程 并求对应抛物线的准线方程 1 过点 1 2 2 焦点在直线x 2y 4 0上 思路分析 从方程形式看 求抛物线的标准方程仅需确定一个待定系数p 因此只需一个条件即可 典例2 规律总结 求抛物线标准方程的方法 直接法 直接利用题中已知条件确定焦参数p 待定系数法 先设出抛物线的方程 再根据题中条件 确定焦参数p 当焦点位置不确定时 应分类讨论或设抛物线方程为y2 mx或x2 my 已知焦点坐标或准线方程可确定抛物线标准方程的形式 已知抛物线过某点不能确定抛物线标准方程的形式 需根据四种抛物线的图象及开口方向确定 跟踪练习2 根据下列条件写出抛物线的标准方程 1 准线方程为y 1 2 焦点在x轴的正半轴上 焦点到准线的距离是2 命题方向3 抛物线定义的应用 已知抛物线的顶点在原点 焦点在x轴的正半轴上 抛物线上的点m 3 m 到焦点的距离等于5 求抛物线的方程和m的值 思路分析 解本题的基本思路有两个 其一设抛物线方程 利用点m在抛物线上和点m到焦点的距离等于5 列出关于m p的方程组求解 其二利用抛物线的定义 得点m到准线的距离为5 直接得p的关系式 求出p值 典例3 规律总结 利用抛物线的定义可以将抛物线上的点到焦点的距离转化为到准线的距离 这一相互转化关系会给解题带来方便 要注意灵活运用定义解题 跟踪练习3 1 已知抛物线y2 4x上一点m与该抛物线的焦点f的距离 mf 4 则点m的横坐标x 2 斜率为1的直线经过抛物线y2 4x的焦点 与抛物线相交于两点a b 则线段ab的长为 解析 1 抛物线y2 4x的焦点为f 1 0 准线为x 1 根据抛物线的定义 点m到准线的距离为4 则点m的横坐标为3 3 8 2 如图 由抛物线的标准方程可知 焦点f 1 0 准线方程x 1 由题设 直线ab的方程为 y x 1 代入抛物线方程y2 4x 整理得 x2 6x 1 0 设a x1 y1 b x2 y2 由抛物线定义可知 af 等于点a到准线x 1的距离 aa 即 af aa x1 1 同理 bf x2 1 ab af bf x1 x2 2 6 2 8 1 在实际应用问题中 有很多问题与抛物线有关 抛物线在建筑工程中很有用途 如拱桥就是抛物线形 探照灯或手电筒的反射镜的轴截面也是抛物线的一部分 此外 还有宇宙中的星体轨道等 2 要解决这些实际问题中有关的计算 我们可以利用坐标法 建立抛物线方程 利用抛物线的标准方程进行推理 运算 抛物线的实际应用 思路分析 图 2 是图 1 中位于直线o p右边的部分 故o b为水池的半径 以抛物线的顶点为原点 对称轴为y轴建立平面直角坐标系 则易得p点坐标 再由p在抛物线上求出抛物线方程 再由b点纵坐标求出b点的横坐标即可获解 典例4 图 1 图 2 导师点睛 抛物线的实际应用问题 关键是建立坐标系 将题目中的已知条件转化为抛物线上点的坐标 从而求得抛物线方程 再把待求问题转化为抛物线的几何量讨论 跟踪练习4 河上有一抛物线形拱桥 当水面距拱桥顶5m时 水面宽为8m 一小船宽4m 高2m 载货后船露出水面上的部分高0 75m 则水面上涨到与抛物线形拱桥顶相距多少米时 小船开始不能通航 思路分析 建立平面直角坐标系得出抛物线方程 借助抛物线方程分析求解 解析 如图所示 以拱桥的拱顶为原点 以过拱顶且平行于水面的直线为x轴 建立平面直角坐标系 设抛物线y2 mx的准线与直线x 1的距离为3 求抛物线的方程 典例5 辨析 题目条件中未给出m的符号 当m 0或m 0时 抛物线的准线是不同 错解考虑问题欠周到 c 2 安徽屯溪一中2017 2018学年高二期中 焦点在x轴 且焦点到准线的距离为2的抛物线方程为 a y2 2xb y2 4xc y2 2xd y2 4x 解析 根据焦点到准线的距离为2 可得p 2 2p 4 结合抛物线焦点所在轴以及开口方向 即可求得抛物线的方程为y2 4x 选d d 解析 由a2 6 b2 2 可得c2 a2 b2 4 所以椭圆的右焦点为 2 0 所以抛物线y2 2px的焦点 2 0 所以p 4 故
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中西医结合肿瘤治疗方案制定技能考核卷答案及解析
- 2025年上海城投集团社会招聘模拟试卷及答案详解(全优)
- 2025年口腔科牙周炎综合诊疗方案考试答案及解析
- 2025年传染病学防控策略综合评估模拟考卷答案及解析
- 2025年老年病学临床实践考察试卷答案及解析
- 2025年内分泌科甲减患者甲状腺替代治疗监测考察答案及解析
- 2025年康复科技能操作规范测评试卷答案及解析
- 2025年病理学常见肿瘤病理分析与诊断模拟卷答案及解析
- 2025年眼科屈光不正矫正技术应用综合考核答案及解析
- 三方协议书是公司先签
- 高中化学374个必备知识点
- 单轴燃气蒸汽联合循环机组调试程序
- 武汉天河机场招聘笔试题及答案
- 舟山海域赤潮发生特点及成因分析
- 湿陷性黄土湿陷量计算表
- 丝杠安全操作保养规定
- 体育测量与评价PPT课件-第九章 运动员选材的测量与评价
- 《情满今生》读书笔记模板
- 胸痛中心网络医院STEMI患者绕行急诊和CCU方案流程图
- 大众蔚揽保养手册
- 急危重病人营养与代谢支持
评论
0/150
提交评论