




已阅读5页,还剩16页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第十章圆锥曲线与方程 10 1椭圆及其性质 高考数学 考点一椭圆的定义和标准方程1 椭圆的定义把平面内与两个定点f1 f2的距离的和等于常数 大于 f1f2 的点的轨迹叫做椭圆 这两个定点叫做椭圆的焦点 两焦点的距离叫做椭圆的焦距 符号表示 pf1 pf2 2a 2a f1f2 注意 1 当2a f1f2 时 轨迹是线段f1f2 2 当2ab 0 焦点在y轴上的椭圆的标准方程为 1 a b 0 给定椭圆 1 m 0 n 0 m n 知识清单 要根据m n的大小来判断焦点在哪个坐标轴上 焦点在分母大的那个坐标轴上 2 若焦点位置不定 则可设椭圆方程为ax2 by2 1 a 0 b 0 且a b 考点二椭圆的几何性质1 椭圆的简单几何性质 2 利用椭圆的参数方程通过参数 能间接表示椭圆上点的坐标 从而转化为三角函数问题求解 3 点p x0 y0 和椭圆 1 a b 0 的关系 1 p x0 y0 在椭圆内 1 4 焦点三角形 椭圆上的点p x0 y0 与两焦点构成的 pf1f2称作焦点三角形 如图 pf1 r1 pf2 r2 f1pf2 1 cos 1 2 r1r2sin b2 b2 tan c y0 当 y0 b 即p为短轴端点时 最大 且最大值为bc 5 ab为椭圆 1 a b 0 的弦 设直线ab的斜率存在且为k k 0 且a x1 y1 b x2 y2 弦中点m x0 y0 则 1 弦长l x1 x2 y1 y2 2 k 3 直线ab的方程 y y0 x x0 4 线段ab的垂直平分线方程 y y0 x x0 椭圆的定义和标准方程的解题策略1 涉及椭圆上的点到焦点的距离问题 可能到一个焦点的距离 常常用到定义 2 求椭圆标准方程的基本方法是待定系数法 具体过程是先定型 再定量 即首先确定焦点所在位置 然后再根据条件建立关于a b的方程组 如果焦点位置不确定 那么要考虑是否有两解 有时为了解题方便 也可把椭圆方程设成mx2 ny2 1 m 0 n 0 m n 的形式 例1 2017浙江名校协作体期初 19 已知椭圆c 1 a b 0 过椭圆c上一点p与椭圆相切的直线l为y x 且点p的横坐标为2 1 求椭圆c的标准方程 方法技巧 2 若ab是椭圆的一条动弦 且 ab 求 aob面积的最大值 解析 1 由已知得p 2 故 1 联立得b2x2 a2 a2b2 化简得x2 a2x a2 a2b2 0 4分 由 0 得a2 8b2 36 0 联立可得a2 12 b2 3 故椭圆c 1 6分 2 设a x1 y1 b x2 y2 当直线ab的斜率存在时 设直线ab的方程为y kx b 联立得 4k2 1 x2 8kbx 4 b2 3 0 故x1 x2 x1x2 8分 由 ab 2 1 k2 x2 x1 2 1 k2 x2 x1 2 4x1x2 得b2 3 1 4k2 10分 又原点o到直线ab的距离d 所以 aob的面积s 所以s2 令u 则s2 9 又u 4 1 4 所以当u 时 s2取最大值 9 故smax 3 13分 当直线ab的斜率不存在时 aob的面积为 14分 综上可得 aob面积的最大值为3 15分 评析本题考查椭圆的标准方程 直线与椭圆的位置关系 弦长计算 韦达定理 点到直线的距离 三角形面积的最值等基础知识 考查化归与转化思想以及函数与方程思想 椭圆的几何性质的解题策略椭圆的几何性质包括 范围 对称性 顶点 离心率等 常考内容是离心率 解决离心率问题的关键在于如何构造关于a与c的等式或不等式 同时还要关注其他几个性质的应用 例2 2017浙江嘉兴基础测试 20 已知椭圆c 1 a b 0 的左 右焦点分别为f1 f2 离心率为 经过点f2且倾斜角为45 的直线l交椭圆于a b两点 1 若 abf1的周长为16 求直线l的方程 2 若 ab 求椭圆c的方程 解题导引 1 由椭圆的性质求a 由离心率的定义得c 代入得直线方程 2 由离心率的定义 把椭圆和直线方程化为只含参数c的形式 联立直线与椭圆方程 由韦达定理计算弦长 由 ab 得c的值 由椭圆的性质得椭圆的标准方程 解析 1 由题设得4a 16 a 4 又 c 2 f2 2 0 直线l的方程为y x 2 2 由 得a 2c b c 椭圆c 3x2 4y2 12c2 又l y x c 设a x1 y1 b x2 y2 联立消去y得7x2 8cx 8c2 0 x1 x2 c x1x2 c2 且 0 ab c 解得c 1 a2 4 b2 3 故所求椭圆c的方程为 1 评析本题考查椭圆的标准方程和性质 直线与椭圆的位置关系 弦长计算 韦达定理等基础知识 考查运算推理能力 与椭圆有关的综合问题的解题策略与椭圆有关的综合问题主要有以下几个方面 1 求直线与椭圆的相交弦长 一般是联立直线与椭圆方程 利用韦达定理和弦长公式 ab x1 x2 y1 y2 k为直线的斜率 且不为0 进行求解 求弦长的取值范围或最值 利用判别式大于零 得到相关参变量的取值范围 2 求弦所在的直线方程 如中点弦 相交弦等 弦的中点轨迹等 往往利用韦达定理和 点差法 但要注意判别式必须大于零 3 与直线斜率综合 一般由斜率公式和韦达定理进行转化 4 求椭圆内接三角形 四边形的面积 或面积的取值范围 最值 一般求出一条弦的长和另一点到这条弦的距离 得三角形面积 四边形一般 分为两个三角形 若是求面积的取值范围或最值 往往把面积表示为某个参量 斜率 截距等 的函数 转化为求函数的值域或最值 例3 2015浙江 19 15分 已知椭圆 y2 1上两个不同的点a b关于直线y mx 对称 1 求实数m的取值范围 2 求 aob面积的最大值 o为坐标原点 解析 1 由题意知m 0 可设直线ab的方程为y x b 由消去y 得x2 x b2 1 0 因为直线y x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 统编版2025-2026学年五年级上册语文期末专项复习-词语有答案
- 江苏省盐城市2024-2025年七年级下学期期末考试历史试卷(含答案)
- 2025年江西省吉安市吉水县中考物理二模试卷(含答案)
- 城市交通智能化发展前景研究
- 酒店行业市场复苏现状与前景
- “云·仓·配”带你走进智慧新世界-智慧仓储与配送管理知到智慧树答案
- “玩”创未来知到智慧树答案
- DB15-T 3155-2023 降雪对放牧畜牧业影响预报技术规程
- 水阻柜原理课件
- 消防消防水源保障方案
- 沉浸式戏剧市场推广渠道创新与2025年策略研究报告
- 银行招聘考试试题及答案(类似竞赛题型部分)
- 加盟合同协议书范本模板模板
- 医院节能培训课件模板
- 2025年初级工程测量员考试试题(附答案)
- 2025低空经济发展及关键技术概况报告
- 学堂在线 经济学原理 章节测试答案
- 2025年湖北省宜昌市【辅警协警】笔试模拟考试(含答案)
- 2025学校“三重一大”事项集体决策制度及会议记录
- 动脉采血常见并发症及处理护理
- 2025年高压电工作业操作证考试题库及答案含答案
评论
0/150
提交评论