学小班教案8.doc_第1页
学小班教案8.doc_第2页
学小班教案8.doc_第3页
学小班教案8.doc_第4页
学小班教案8.doc_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

十佳课外辅导机构 湖南诚信办学机构任课教师万美珍学生年级九班级类型 小班课时总课次 第 16 课授课时间 2014 年 12 月 7 日(星期 天 ) 8:0010:00 教学课题二次函数教学目标掌握二次函数的性质和判定,并能灵活运用一、圆的概念集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线); 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线; 4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线; 5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。二、点与圆的位置关系1、点在圆内 点在圆内;2、点在圆上 点在圆上;3、点在圆外 点在圆外;三、直线与圆的位置关系1、直线与圆相离 无交点;2、直线与圆相切 有一个交点;3、直线与圆相交 有两个交点;四、圆与圆的位置关系外离(图1) 无交点 ;外切(图2) 有一个交点 ;相交(图3) 有两个交点 ;内切(图4) 有一个交点 ;内含(图5) 无交点 ;五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: 是直径 弧弧 弧弧中任意2个条件推出其他3个结论。推论2:圆的两条平行弦所夹的弧相等。 即:在中, 弧弧六、圆心角定理圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。 此定理也称1推3定理,即上述四个结论中,只要知道其中的1个相等,则可以推出其它的3个结论,即:; 弧弧七、圆周角定理1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。即:和是弧所对的圆心角和圆周角 2、圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧;即:在中,、都是所对的圆周角 推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。即:在中,是直径 或 是直径推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。即:在中, 是直角三角形或注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。八、圆内接四边形圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。 即:在中, 四边形是内接四边形 九、切线的性质与判定定理(1)切线的判定定理:过半径外端且垂直于半径的直线是切线; 两个条件:过半径外端且垂直半径,二者缺一不可 即:且过半径外端 是的切线(2)性质定理:切线垂直于过切点的半径(如上图) 推论1:过圆心垂直于切线的直线必过切点。 推论2:过切点垂直于切线的直线必过圆心。以上三个定理及推论也称二推一定理:即:过圆心;过切点;垂直切线,三个条件中知道其中两个条件就能推出最后一个。十、切线长定理切线长定理: 从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。即:、是的两条切线 平分十一、圆幂定理(1)相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。即:在中,弦、相交于点, (2)推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。即:在中,直径, (3)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。即:在中,是切线,是割线 (4)割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等(如上图)。即:在中,、是割线 十二、两圆公共弦定理圆公共弦定理:两圆圆心的连线垂直并且平分这两个圆的的公共弦。如图:垂直平分。即:、相交于、两点 垂直平分十三、圆的公切线两圆公切线长的计算公式:(1)公切线长:中,;(2)外公切线长:是半径之差; 内公切线长:是半径之和 。十四、圆内正多边形的计算(1)正三角形 在中是正三角形,有关计算在中进行:;(2)正四边形同理,四边形的有关计算在中进行,:(3)正六边形同理,六边形的有关计算在中进行,.十五、扇形、圆柱和圆锥的相关计算公式1、扇形:(1)弧长公式:;(2)扇形面积公式: :圆心角 :扇形多对应的圆的半径 :扇形弧长 :扇形面积2、圆柱: (1)圆柱侧面展开图 =(2)圆柱的体积:(2)圆锥侧面展开图(1)=(2)圆锥的体积:【考点例题分析】知识点一、圆的定义及有关概念例 P为O内一点,OP=3cm,O半径为5cm,则经过P点的最短弦长为_;最长弦长为_知识点二、平面内点和圆的位置关系例 如图,在中,直角边,点,分别是,的中点,以点为圆心,的长为半径画圆,则点在圆A的_,点在圆A的_练: 爆破时,导火索燃烧的速度是每秒0.9cm,点导火索的人需要跑到离爆破点120m以外的安全区域。这个导火索的长度为18cm,那么点导火索的人每秒钟跑6.5m是否安全? 分析:爆破时的安全区域是以爆破点为圆心,以120m为半径的圆的外部,如图所示:知识点三、圆的基本性质例1:如图,AB是O的直径,BD是O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么? 例2如图,在O中,AB、CD是两条弦,OEAB,OFCD,垂足分别为EF (1)如果AOB=COD,那么OE与OF的大小有什么关系?为什么?(2)如果OE=OF,那么AB与CD的大小有什么关系?AB与CD的大小有什么关系?为什么?AOB与COD呢? 知识点四、圆与三角形的关系例1:如图,点O是ABC的内切圆的圆心,若BAC=80,则BOC=( )A130 B100 C50 D65例2: 如图,RtABC,C=90,AC=3cm,BC=4cm,则它的外心与顶点C的距离为( )A5 cm B2.5cm C3cm D4cm练习:1 2.CAD所夹圆内部分的面积。解:符合题设条件的图形有两种情况:知识点五、直线和圆的位置关系:相交、相切、相离例1如图,AB为O的直径,C是O上一点,D在AB的延长线上,且DCB=A(1)CD与O相切吗?如果相切,请你加以证明,如果不相切,请说明理由(2)若CD与O相切,且D=30,BD=10,求O的半径 例2.如图,AB是O的直径,AC是弦,BAC的平分线AD交O于点D,DEAC,交AC的延长线于点E,OE交AD于点F求证:DE是O的切线;EDCBAO例3:如图,ABC的内切圆O与BC、AB、AC分别相切于点D、E、F,且AB=9cm,BC=14cm,CA=13cm,求AE、BD、CF的长。例4:如图所示,EB、EC是O的两条切线,B、C是切点,A、D是O上两点, 如果E=46,DCF=32,求A的度数_A_y_x_O知识点六、圆与圆的位置关系例:如图所示,点A坐标为(0,3),OA半径为1,点B在x轴上(1) 若点B坐标为(4,0),B半径为3,试判断A与B位置关系;(2)若B过M(2,0)且与A相切,求B点坐标知识点七、正多边形和圆例:在直径为AB的半圆内,划出一块三角形区域,如图所示,使三角形的一边为AB,顶点C在半圆圆周上,其它两边分别为6和8,现要建造一个内接于ABC的矩形水池DEFN,其中D、E在AB上,如图2494的设计方案是使AC=8,BC=6(1)求ABC的边AB上的高h(2)设DN=x,且,当x取何值时,水池DEFN的面积最大?(3)实际施工时,发现在AB上距B点185的M处有一棵大树,问:这棵大树是否位于最大矩形水池的边上?如果在,为了保护大树,请设计出另外的方案,使内接于满足条件的三角形中欲建的最大矩形水池能避开大树知识点八、弧长和扇形、圆锥侧面积面积例1已知扇形的圆心角为120,面积为300cm2 (1)求扇形的弧长; (2)若将此扇形卷成一个圆锥,则这个圆锥的轴截面面积为多少?典题分析1.如图,从点P向O引两条切线PA,PB,切点为A,B,AC为弦,BC为O的直径,若P=60,PB=2cm,求AC的长2.如图,已知扇形AOB的半径为12,OAOB,C为OB上一点,以OA为直线的半圆O与以BC为直径的半圆O相切于点D求图中阴影部分面积3. 如图,在平面直角坐标系中,C与y轴相切,且C点坐标为(1,0),直线过点A(1,0),与C相切于点D,求直线的解析式。3题4.如图.某货船以20海里时的速度将一批重要物资由A处运往正西方向的B 处,经16的航行达到,达到后必须立

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论