运用数学史于数学教育的理由.doc_第1页
运用数学史于数学教育的理由.doc_第2页
运用数学史于数学教育的理由.doc_第3页
运用数学史于数学教育的理由.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

运用数学史于数学教育的理由1、 引发学习动机,从而使学生及老师保持对数学的兴趣和热情。2、 为数学平添人情味,使它已于亲近,也使学生明白前人创业的艰辛,并且明白到不应把自己碰到的学习困难归咎于自己愚笨,同时教师也可以从历史的发展中绊脚石,了解学生学习困难,可以参考历史发展作为计划课题安排的指引。3、 了解数学思想发展过程,能增进理解、对比古今,能更好的明白现代理论和技巧的优点。4、 对数学整体有较为全面的看法和认识5、 渗透多元文化观点,了解数学与社会发展的关系,并提供跨学科合作的同时教育。6、 数学史提供学生进一步探索的机会和素材运用数学史和数学教育的方法1、 在讲课中加插数学家的轶事和言行2、 开始将手某个数学概念时,先介绍它的历史发展。3、 以数学史上的名题及其解答,去讲授有关的数学概念,以数学史上的关键事例去说明有关的技巧和方法,以数学史上的著名错误,或者误解,去帮助学生克服困难4、 利用原著数学文献,设计课堂习作5、 指导学生制作富有数学史趣味的壁报,专题,探讨等6、 在课程内容里渗透历史发展观7、 以数学史作为指引,去设计整体课程8、 讲授数学史的课我们是以一个数学工作者和数学教师的身份看待数学史,无论是原著,二手材料,论述或者故事,传记,都是我们的营养品,值得我们学习、消化和运用,通过这些材料我们看到多姿多彩的数学意恋如何产生,明白到他们如何演变成为今天我们所熟悉的形式,也从这些发展演变中,认识到创造这些知识的人,产生这些人和这些知识的客观条件,还有这些知识的社会作用,和它对文化的影响数学课程改革的基本思路是:1、 以反映未来社会对公民所必须的数学思想方法为主线,选择和安排教学内容2、 以与学生年龄特征相适应的大众化、生活化的方式呈现数学内容3、 使学生在活动中,在现实生活中学习数学,发展数学扼要的说,1、 思维训练2、 实用知识3、 文化素养往往我们把数学简单作为一种技巧,一种工具去讲授,这样的话,纵使传授了知识,亦必掩盖了数学作为文化活动的面目,学生不易了解数学有他的生命和发展,有它的过去和未来,学生容易把数学看成是一堆现成的公式和定理,虽然完全无误,但是,刻板枯燥,学生见到的仅是技巧,堆砌和逻辑游戏,难怪只有极少的学生被数学吸引了,很多学生毕业后,都像完全没有学过数学我们应从五个角度去挖掘数学史的文化价值,首先,数学为人类提供精密思维的模式;其次,数学是其他科学的工具和语言;其三,数学是推动生产发展、影响人类物质生活方式的杠杆;其四,数学是人类思想革命的有力武器;最后,数学是促进艺术发展的文化激素。1654年,在法国有技能相当的A、B两人,进行一场比赛,规定首先获胜三次者获取奖金(赌金)64枪(当时的金币单位),当A刚在第一次获胜后,由于发生了特殊事故,比赛必须中断,于是奖金的分配发生困难,两人因此商请数学家帕斯卡解决分配方法,这就成为传授和发展概率论的开端。是关于这个问题回答1、 如果比赛没有终止,在这场比赛中,A取得奖金的场合及B取得奖金的场合各有几种?2、 A取得奖金的概率及B取得奖金的概率各是多少?3、 即使比赛中止,如果按照期望值分配64枪,A、B取分各是多少?数学史上的三次危机经济上有危机,历史上数学也有三次危机。第一次危机发生在公元前580568年之间的古希腊,数学家毕达哥拉斯建立了毕达哥拉斯学派。这个学派集宗教、科学和哲学于一体,该学派人数固定,知识保密,所有发明创造都归于学派领袖。当时人们对有理数的认识还很有限,对于无理数的概念更是一无所知,毕达哥拉斯学派所说的数,原来是指整数,他们不把分数看成一种数,而仅看作两个整数之比,他们错误地认为,宇宙间的一切现象都归结为整数或整数之比。该学派的成员希伯索斯根据勾股定理(西方称为毕达哥拉斯定理)通过逻辑推理发现,边长为l的正方形的对角线长度既不是整数,也不是整数的比所能表示。希伯索斯的发现被认为是“荒谬”和违反常识的事。它不仅严重地违背了毕达哥拉斯学派的信条,也冲击了当时希腊人的传统见解。使当时希腊数学家们深感不安,相传希伯索斯因这一发现被投入海中淹死,这就是第一次数学危机。这场危机通过在几何学中引进不可通约量概念而得到解决。两个几何线段,如果存在一个第三线段能同时量尽它们,就称这两个线段是可通约的,否则称为不可通约的。正方形的一边与对角线,就不存在能同时量尽它们的第三线段,因此它们是不可通约的。很显然,只要承认不可通约量的存在使几何量不再受整数的限制,所谓的数学危机也就不复存在了。不可通约量的研究开始于公元前4世纪的欧多克斯,其成果被欧几里得所吸收,部分被收人他的几何原本中。第二次数学危机发生在十七世纪。十七世纪微积分诞生后,由于推敲微积分的理论基础问题,数学界出现混乱局面,即第二次数学危机。微积分的形成给数学界带来革命性变化,在各个科学领域得到广泛应用,但微积分在理论上存在矛盾的地方。无穷小量是微积分的基础概念之一。微积分的主要创始人牛顿在一些典型的推导过程中,第一步用了无穷小量作分母进行除法,当然无穷小量不能为零;第二步牛顿又把无穷小量看作零,去掉那些包含它的项,从而得到所要的公式,在力学和几何学的应用证明了这些公式是正确的,但它的数学推导过程却在逻辑上自相矛盾。焦点是:无穷小量是零还是非零?如果是零,怎么能用它做除数?如果不是零,又怎么能把包含着无穷小量的那些项去掉呢?直到19世纪,柯西详细而有系统地发展了极限理论。柯西认为把无穷小量作为确定的量,即使是零,都说不过去,它会与极限的定义发生矛盾。无穷小量应该是要怎样小就怎样小的量,因此本质上它是变量,而且是以零为极限的量,至此柯西澄清了前人的无穷小的概念,而且把无穷小量从形而上学的束缚中解放出来,第二次数学危机基本解决。第二次数学危机的解决使微积分更完善。第三次数学危机,发生在十九世纪末。当时英国数学家罗素把集合分成两种。第一种集合:集合本身不是它的元素,即A A;第二种集合:集合本身是它的一个元素AA,例如一切集合所组成的集合。那么对于任何一个集合B,不是第一种集合就是第二种集合。假设第一种集合的全体构成一个集合M,那么M属于第一种集合还是属于第二种集合。如果M属于第一种集合,那么M应该是M的一个元素,即MM,但是满足MM关系的集合应属于第二种集合,出现矛盾。如果M属于第二种集合,那么M应该是满足MM的关系,这样M又是属于第一种集合矛盾。以上推理过程所形成的俘论叫罗素悖论。由于严格的极限理论的建立,数学上的第一次第二次危机已经解决,但极限理论是以实数理论为基础的,而实数理论又是以集合论为基础的,现在集合论又出现了罗素悖论,因而形成了数学史上更大的危机。从此,数学家们就开始为这场危机寻找解决的办法,其中之一是把集合论建立在一组公理之上,以回避悖论。首先进行这个工作的是德国数学家策梅罗,他提出七条公理,建立了一种不会产生悖论的集合论,又经过德国的另一位数学家弗芝克尔的改进,形成了一个无矛盾的集合论公理系统。即所谓ZF公理系统。这场数学危机到此缓和下来。数学危机给数学发展带来了新的动力。在这场危机中集合论得到较快的发展,数学基础的进步更快,数理逻辑也更加成熟。然而,矛盾和人们意想不到的事仍然不断出现,而且今后仍然会这样。笛卡尔的主要数学成果集中在他的“几何学”中。当时,代数还是一门新兴科学,几何学的思维还在数学家的头脑中占有统治地位。在笛卡尔之前,几何与代数是数学中两个不同的研究领域。笛卡尔站在方法论的自然哲学的高度,认为希腊人的几何学过于依赖于图形,束缚了人的想象力。对于当时流行的代数学,他觉得它完全从属于法则和公式,不能成为一门改进智力的科学。因此他提出必须把几何与代数的优点结合起来,建立一种“真正的数学”。笛卡尔的思想核心是:把几何学的问题归结成代数形式的问题,用代数学的方法进行计算、证明,从而达到最终解决几何问题的目的。依照这种思想他创立了我们现在称之为的“解析几何学”。 1637年,笛卡尔发表了几何学,创立了平面直角坐标系。他用平面上的一点到两条固定直线的距离来确定点的位置,用坐标来描述空间上的点。他进而又创立了解析几何学,表明了几何问题不仅可以归结成为代数形式,而且可以通过代数变换来实现发现几何性质,证明几何性质。解析几何的出现,改变了自古希腊以来代数和几何分离的趋向,把相互对立着的“数” 与“形”统一了起来,使几何曲线与代数方程相结合。笛卡尔的这一天才创见,更为微积分的创立奠定了基础,从而开拓了变量数学的广阔领域。最为可贵的是,笛卡尔用运动的观点,把曲线看成点的运动的轨迹,不仅建立了点与实数的对应关系,而且把形(包括点、线、面)和“数”两个对立的对象统一起来,建立了曲线和方程的对应关系。这种对应关系的建立,不仅标志着函数概念的萌芽,而且标明变数进入了数学,使数学在思想方法上发生了伟大的转折-由常量数学进入变量数学的时期。正如恩格斯所说:“数学中的转折点是笛卡尔的变数。有了变数,运动进入了数学,有了变数,辨证法进入了数学,有了变数,微分和积分也就立刻成为必要了。笛卡尔的这些成就,为后来牛顿、莱布尼兹发现微积分,为一大批数学家的新发现开辟了道路。平面几何作图限制只能用直尺、圆规,而这里所谓的直尺是指没有刻度只能画直线的尺。用直尺与圆规当然可以做出许多种之图形,但有些图形如正七边形、正九边形就做不出来。有些问题看起来好像很简单,但真正做出来却很困难,这些问题之中最有名的就是所谓的三大问题。 三大几何问题是: 1.化圆为方求作一正方形使其面积等於一已知圆; 2.三等分任意角; 3.倍立方求作一立方体使其体积是一已知立方体的二倍。 圆与正方形都是常见的几何图形,但如何作一个正方形和已知圆等面积呢?若已知圆的半径为1则其面积为(1)2=,所以化圆为方的问题等於去求一正方形其面积为,也就是用尺规做出长度为1/2的线段(或者是的线段)。 三大问题的第二个是三等分一个角的问题。对於某些角如90。、180。三等分并不难,但是否所有角都可以三等分呢?例如60。,若能三等分则可以做出20。的角,那麽正18边形及正九边形也都可以做出来了(注:圆内接一正十八边形每一边所对的圆周角为360。/18=20。)。其实三等分角的问题是由求作正多边形这一类问题所引起来的。 第三个问题是倍立方。埃拉托塞尼(公元前276年公元前195年)曾经记述一个神话提到说有一个先知者得到神谕必须将立方形的祭坛的体积加

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论