


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
19.1.1 平行四边形的性质一、教学目标:1 理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质2 能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题3 培养学生的推理论证能力和逻辑思维能力二、 重点、难点1 重点:平行四边形对角线互相平分的性质,以及性质的应用2 难点:综合运用平行四边形的性质进行有关的论证和计算三、例题的意图分析 本节课安排了两个例题,例1是一道补充题,它是性质3的直接运用,然后对例1进行了引申,可以根据学生的实际情况选讲,并归纳结论:过平行四边形对角线的交点作直线交对边或对边的延长线,所得的对应线段相等例1与后面的三个图形是一组重要的基本图形,熟悉它的性质对解答复杂问题是很有帮助的例2是教材p94的例2,这是复习巩固小学学过的平行四边形面积计算这个例题比小学计算平行四边形面积的题加深了一步,需要应用勾股定理,先求得平行四边形一边上的高,然后才能应用公式计算在以后的解题中,还会遇到需要应用勾股定理来求高或底的问题,在教学中要注意使学生掌握其方法四、课堂引入1复习提问:(1)什么样的四边形是平行四边形?四边形与平行四边形的关系是:(2)平行四边形的性质:具有一般四边形的性质(内角和是)角:平行四边形的对角相等,邻角互补 边:平行四边形的对边相等 2【探究】:请学生在纸上画两个全等的abcd和efgh,并连接对角线ac、bd和eg、hf,设它们分别交于点o把这两个平行四边形落在一起,在点o处钉一个图钉,将abcd绕点o旋转,观察它还和efgh重合吗?你能从子中看出前面所得到的平行四边形的边、角关系吗?进一步,你还能发现平行四边形的什么性质吗?结论:(1)平行四边形是中心对称图形,两条对角线的交点是对称中心; (2)平行四边形的对角线互相平分五、例习题分析例1(补充) 已知:如图421, abcd的对角线ac、bd相交于点o,ef过点o与ab、cd分别相交于点e、f求证:oeof,ae=cf,be=df证明:在 abcd中,abcd,1234又 oaoc(平行四边形的对角线互相平分), aoecof(asa)oeof,ae=cf(全等三角形对应边相等) abcd, ab=cd(平行四边形对边相等) abae=cdcf 即 be=fd【引申】若例1中的条件都不变,将ef转动到图b的位置,那么例1的结论是否成立?若将ef向两方延长与平行四边形的两对边的延长线分别相交(图c和图d),例1的结论是否成立,说明你的理由解略例2(教材p94的例2)已知四边形abcd是平行四边形,ab10cm,ad8cm,acbc,求bc、cd、ac、oa的长以及abcd的面积分析:由平行四边形的对边相等,可得bc、cd的长,在rtabc中,由勾股定理可得ac的长再由平行四边形的对角线互相平分可求得oa的长,根据平行四边形的面积计算公式:平行四边形的面积=底高(高为此底上的高),可求得abcd的面积(平行四边形的面积小学学过,再次强调“底”是对应着高说的,平行四边形中,任一边都可以作为“底”,“底”确定后,高也就随之确定了)3.平行四边形的面积计算解略(参看教材p94)六、随堂练习1在平行四边形中,周长等于48, 已知一边长12,求各边的长 已知ab=2bc,求各边的长 已知对角线ac、bd交于点o,aod与aob的周长的差是10,求各边的长2如图,abcd中,aebd,ead=60,ae=2cm,ac+bd=14cm,则obc的周长是_ _cm3abcd一内角的平分线与边相交并把这条边分成,的两条线段,则abcd的周长是_ _七、课后练习1判断对错(1)在abcd中,ac交bd于o,则ao=ob=oc=od ( )(2)平行四边形两条对角线的交点到一组对边的距离相等 ( )(3)平行四边形的两组对边分别平行且相等 ( )(4)平行四边形是轴对称图形 ( )2在 abcd中,ac6、bd4,则ab的范围是_ _3在平行四边形abcd中,已知ab、bc、cd三条边的长度分别为(x+3),(x-4)和16,则
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年教育行业人才流失原因与吸引机制创新路径研究报告
- 2025年植物基因编辑技术在转基因植物抗病虫害育种中的应用成果鉴定报告
- 自卸吊车买卖合同协议书
- 泵车转卖合同协议书范本
- 防尘布工地销售合同范本
- 理疗店合伙协议合同范本
- 物业小区的广告合同协议
- 法院婚内财产协议书模板
- 竹制半成品采购合同范本
- 罗非鱼鱼苗订购合同范本
- 2025年施工员-土建方向-岗位技能(施工员)考试题库
- 河南省安阳市林州市2024-2025学年八年级下学期期末历史试卷 (含答案)
- 胸痛单元建设课件介绍
- 2025年广西中考语文试题卷(含答案)
- 2024广西专业技术人员继续教育公需科目参考答案(97分)
- 江苏省建筑与装饰工程计价定额(2014)电子表格版
- 湘少版小学全部英语单词
- 小学数学西南师大四年级下册八平均数小学数学西师版四年级下册《平均数》教学设计
- T-SDDA 0002-2021 住宅装饰装修工程质量验收标准
- 智慧机场贵宾厅建设方案
- CTPAT反恐文件1. 货物单据和文件记录安全控制程序
评论
0/150
提交评论