




已阅读5页,还剩79页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3eud教育网 百万教学资源,完全免费,无须注册,天天更新!2010届高考数学一轮复习资料四29、题目 高中数学复习专题讲座:排列、组合的应用问题高考要求 排列、组合是每年高考必定考查的内容之一,纵观全国高考数学题,每年都有12道排列组合题,考查排列组合的基础知识、思维能力 重难点归纳 1 排列与组合的应用题,是高考常见题型,其中主要考查有附加条件的应用问题 解决这类问题通常有三种途径 (1)以元素为主,应先满足特殊元素的要求,再考虑其他元素 (2)以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置 (3)先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列数或组合数 前两种方式叫直接解法,后一种方式叫间接(剔除)解法 2 在求解排列与组合应用问题时,应注意 (1)把具体问题转化或归结为排列或组合问题;(2)通过分析确定运用分类计数原理还是分步计数原理;(3)分析题目条件,避免“选取”时重复和遗漏;(4)列出式子计算和作答 3 解排列与组合应用题常用的方法有 直接计算法与间接(剔除)计算法;分类法与分步法;元素分析法和位置分析法;插空法和捆绑法等八种 4 经常运用的数学思想是 分类讨论思想;转化思想;对称思想 典型题例示范讲解 例1在AOB的OA边上取m个点,在OB边上取n个点(均除O点外),连同O点共m+n+1个点,现任取其中三个点为顶点作三角形,可作的三角形有( )命题意图 考查组合的概念及加法原理 知识依托 法一分成三类方法;法二,间接法,去掉三点共线的组合 错解分析 A中含有构不成三角形的组合,如 CC中,包括O、Bi、Bj;CC中,包含O、Ap、Aq,其中Ap、Aq,Bi、Bj分别表示OA、OB边上不同于O的点;B漏掉AiOBj;D有重复的三角形 如CC中有AiOBj,CC中也有AiOBj 技巧与方法 分类讨论思想及间接法 解法一 第一类办法 从OA边上(不包括O)中任取一点与从OB边上(不包括O)中任取两点,可构造一个三角形,有CC个;第二类办法 从OA边上(不包括O)中任取两点与OB边上(不包括O)中任取一点,与O点可构造一个三角形,有CC个;第三类办法 从OA边上(不包括O)任取一点与OB边上(不包括O)中任取一点,与O点可构造一个三角形,有CC个 由加法原理共有N=CC+CC+CC个三角形 解法二 从m+n+1中任取三点共有C个,其中三点均在射线OA(包括O点),有C个,三点均在射线OB(包括O点),有C个 所以,个数为N=CCC个 答案 C例2四名优等生保送到三所学校去,每所学校至少得一名,则不同的保送方案的总数是_ 命题意图 本题主要考查排列、组合、乘法原理概念,以及灵活应用上述概念处理数学问题的能力 知识依托 排列、组合、乘法原理的概念 错解分析 根据题目要求每所学校至少接纳一位优等生,常采用先安排每学校一人,而后将剩的一人送到一所学校,故有3A种 忽略此种办法是 将同在一所学校的两名学生按进入学校的前后顺序,分为两种方案,而实际题目中对进入同一所学校的两名学生是无顺序要求的 技巧与方法 解法一,采用处理分堆问题的方法 解法二,分两次安排优等生,但是进入同一所学校的两名优等生是不考虑顺序的 解法一 分两步 先将四名优等生分成2,1,1三组,共有C种;而后,对三组学生安排三所学校,即进行全排列,有A33种 依乘法原理,共有N=C =36(种) 解法二 分两步 从每个学校至少有一名学生,每人进一所学校,共有A种;而后,再将剩余的一名学生送到三所学校中的一所学校,有3种 值得注意的是 同在一所学校的两名学生是不考虑进入的前后顺序的 因此,共有N=A3=36(种) 答案 36例3有五张卡片,它们的正、反面分别写0与1,2与3,4与5,6与7,8与9,将其中任意三张并排放在一起组成三位数,共可组成多少个不同的三位数?解法一(间接法) 任取三张卡片可以组成不同三位数C23A(个),其中0在百位的有C22A (个),这是不合题意的,故共有不同三位数 C23AC22A=432(个) 解法二 (直接法) 第一类 0与1卡片放首位,可以组成不同三位数有 (个); 第二类 0与1卡片不放首位,可以组成不同三位数有 (个) 故共有不同三位数 48+384432(个) 学生巩固练习 1 从集合0,1,2,3,5,7,11中任取3个元素分别作为直线方程Ax+By+C=0中的A、B、C,所得的经过坐标原点的直线有_条(用数值表示) 2 圆周上有2n个等分点(n1),以其中三个点为顶点的直角三角形的个数为_ 3 某人手中有5张扑克牌,其中2张为不同花色的2,3张为不同花色的A,有5次出牌机会,每次只能出一种点数的牌但张数不限,此人有多少种不同的出牌方法?4 二次函数y=ax2+bx+c的系数a、b、c,在集合3,2,1,0,1,2,3,4中选取3个不同的值,则可确定坐标原点在抛物线内部的抛物线多少条?5有3名男生,4名女生,在下列不同要求下,求不同的排列方法总数 (1)全体排成一行,其中甲只能在中间或者两边位置 (2)全体排成一行,其中甲不在最左边,乙不在最右边 (3)全体排成一行,其中男生必须排在一起 (4)全体排成一行,男、女各不相邻 (5)全体排成一行,男生不能排在一起 (6)全体排成一行,其中甲、乙、丙三人从左至右的顺序不变 (7)排成前后二排,前排3人,后排4人 (8)全体排成一行,甲、乙两人中间必须有3人 6 20个不加区别的小球放入编号为1、2、3的三个盒子中,要求每个盒内的球数不小于它的编号数,求不同的放法种数 7 用五种不同的颜色,给图中的(1)(2)(3)(4)的各部分涂色,每部分涂一色,相邻部分涂不同色,则涂色的方法共有几种?8 甲、乙、丙三人值周一至周六的班,每人值两天班,若甲不值周一、乙不值周六,则可排出不同的值班表数为多少?参考答案 解析 因为直线过原点,所以C=0,从1,2,3,5,7,11这6个数中任取2个作为A、B两数的顺序不同,表示的直线不同,所以直线的条数为A=30 答案 302 解析 2n个等分点可作出n条直径,从中任选一条直径共有C种方法;再从以下的(2n2)个等分点中任选一个点,共有C种方法,根据乘法原理 直角三角形的个数为 CC=2n(n1)个 答案 2n(n1)3 解 出牌的方法可分为以下几类 (1)5张牌全部分开出,有A种方法;(2)2张2一起出,3张A一起出,有A种方法;(3)2张2一起出,3张A一起出,有A种方法;(4)2张2一起出,3张A分两次出,有CA种方法;(5)2张2分开出,3张A一起出,有A种方法;(6)2张2分开出,3张A分两次出,有CA种方法 因此,共有不同的出牌方法A+A+A+AA+A+CA=860种 4 解 由图形特征分析,a0,开口向上,坐标原点在内部f(0)=c0;a0,开口向下,原点在内部f(0)=c0,所以对于抛物线y=ax2+bx+c来讲,原点在其内部af(0)=ac0,则确定抛物线时,可先定一正一负的a和c,再确定b,故满足题设的抛物线共有CCAA=144条 5 解 (1)利用元素分析法,甲为特殊元素,故先安排甲左、右、中共三个位置可供甲选择 有A种,其余6人全排列,有A种 由乘法原理得AA=2160种 (2)位置分析法 先排最右边,除去甲外,有A种,余下的6个位置全排有A种,但应剔除乙在最右边的排法数AA种 则符合条件的排法共有AAAA=3720种 (3)捆绑法 将男生看成一个整体,进行全排列 再与其他元素进行全排列 共有AA=720种 (4)插空法 先排好男生,然后将女生插入其中的四个空位,共有AA=144种 (5)插空法 先排女生,然后在空位中插入男生,共有AA=1440种 (6)定序排列 第一步,设固定甲、乙、丙从左至右顺序的排列总数为N,第二步,对甲、乙、丙进行全排列,则为七个人的全排列,因此A=NA,N= 840种 (7)与无任何限制的排列相同,有A=5040种 (8)从除甲、乙以外的5人中选3人排在甲、乙中间的排法有A种,甲、乙和其余2人排成一排且甲、乙相邻的排法有AA 最后再把选出的3人的排列插入到甲、乙之间即可 共有AAA=720种 6 解 首先按每个盒子的编号放入1个、2个、3个小球,然后将剩余的14个小球排成一排,如图,|O|O|O|O|O|O|O|O|O|O|O|O|O|O|,有15个空档,其中“O”表示小球,“|”表示空档 将求小球装入盒中的方案数,可转化为将三个小盒插入15个空档的排列数 对应关系是 以插入两个空档的小盒之间的“O”个数,表示右侧空档上的小盒所装有小球数 最左侧的空档可以同时插入两个小盒 而其余空档只可插入一个小盒,最右侧空档必插入小盒,于是,若有两个小盒插入最左侧空档,有C种;若恰有一个小盒插入最左侧空档,有种;若没有小盒插入最左侧空档,有C种 由加法原理,有N=120种排列方案,即有120种放法 7 解 按排列中相邻问题处理 (1)(4)或(2)(4) 可以涂相同的颜色 分类 若(1)(4)同色,有A种,若(2)(4)同色,有A种,若(1)(2)(3)(4)均不同色,有A种 由加法原理,共有N=2A+A=240种 8 解 每人随意值两天,共有CCC个;甲必值周一,有CCC个;乙必值周六,有CCC个;甲必值周一且乙必值周六,有CCC个 所以每人值两天,且甲必不值周一、乙必不值周六的值班表数,有N=CCC2CCC+ CCC=90256+12=42个 课前后备注 30、题目 高中数学复习专题讲座:概率与统计高考要求 概率是高考的重点内容之一,尤其是新增的随机变量这部分内容 要充分注意一些重要概念的实际意义,理解概率处理问题的基本思想方法 重难点归纳本章内容分为概率初步和随机变量两部分 第一部分包括等可能事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率和独立重复实验 第二部分包括随机变量、离散型随机变量的期望与方差 涉及的思维方法 观察与试验、分析与综合、一般化与特殊化 主要思维形式有 逻辑思维、聚合思维、形象思维和创造性思维 典型题例示范讲解 例1有一容量为50的样本,数据的分组及各组的频率数如下 10,154 30,359 15,205 35,408 20,2510 40,453 25,3011(1)列出样本的频率分布表(含累积频率);(2)画出频率分布直方图和累积频率的分布图 命题意图 本题主要考查频率分布表,频率分布直方图和累积频率的分布图的画法 知识依托 频率、累积频率的概念以及频率分布表、直方图和累积频率分布图的画法 错解分析 解答本题时,计算容易出现失误,且要注意频率分布与累积频率分布的区别 技巧与方法 本题关键在于掌握三种表格的区别与联系 解 (1)由所给数据,计算得如下频率分布表 数据段频数频率累积频率10,1540.080.0815,2050.100.1820,25100.200.3825,30110.220.6030,3590.180.7835,4080.160.9440,4530.061总计501(2)频率分布直方图与累积频率分布图如下 例2袋子A和B中装有若干个均匀的红球和白球,从A中摸出一个红球的概率是,从B中摸出一个红球的概率为p () 从A中有放回地摸球,每次摸出一个,有3次摸到红球即停止(i)求恰好摸5次停止的概率;(ii)记5次之内(含5次)摸到红球的次数为,求随机变量的分布率及数学期望E () 若A、B两个袋子中的球数之比为12,将A、B中的球装在一起后,从中摸出一个红球的概率是,求p的值命题意图 本题考查利用概率知识和期望的计算方法 知识依托 概率的计算及期望的概念的有关知识 错解分析 在本题中,随机变量的确定,稍有不慎,就将产生失误 技巧与方法 可借助n次独立重复试验概率公式计算概率 解 ()(i)(ii)随机变量的取值为0,1,2,3,;由n次独立重复试验概率公式,得;(或)随机变量的分布列是0123P的数学期望是 ()设袋子A中有m个球,则袋子B中有2m个球由,得 例3如图,用A、B、C三类不同的元件连接成两个系统N1、N2,当元件A、B、C都正常工作时,系统N1正常工作;当元件A正常工作且元件B、C至少有一个正常工作时,系统N2正常工作 已知元件A、B、C正常工作的概率依次为0.80,0.90,0.90,分别求系统N1,N2正常工作的概率P1、P2解 记元件A、B、C正常工作的事件分别为A、B、C,由已知条件P(A)=0.80, P(B)=0.90,P(C)=0.90 (1)因为事件A、B、C是相互独立的,所以,系统N1正常工作的概率P1=P(ABC)=P(A)P(B)P(C)=0.648,故系统N1正常工作的概率为0.648 (2)系统N2正常工作的概率P2=P(A)1P()=P(A)1P()P()=0 801(10 90)(10 90)=0 792故系统N2正常工作的概率为0 792 学生巩固练习 1 甲射击命中目标的概率是,乙命中目标的概率是,丙命中目标的概率是 现在三人同时射击目标,则目标被击中的概率为( )2 已知随机变量的分布列为 P(=k)=,k=1,2,3,则P(3+5)等于A 6 B 9 C 3 D 43 1盒中有9个正品和3个废品,每次取1个产品,取出后不再放回,在取得正品前已取出的废品数的期望E=_ 4 某班有52人,男女各半,男女各自平均分成两组,从这个班中选出4人参加某项活动,这4人恰好来自不同组别的概率是_ 5 甲、乙两人各进行一次射击,如果两人击中目标的概率都是0.6,计算 (1)两人都击中目标的概率;(2)其中恰有一人击中目标的概率;(3)至少有一人击中目标的概率 6 已知连续型随机变量的概率密度函数f(x)=(1)求常数a的值,并画出的概率密度曲线;(2)求P(1) 7 设P在0,5上随机地取值,求方程x2+px+=0有实根的概率 8 设一部机器在一天内发生故障的概率为0 2,机器发生故障时全天停止工作 若一周5个工作日里均无故障,可获利润10万元;发生一次故障可获利润5万元,只发生两次故障可获利润0万元,发生三次或三次以上故障就要亏损2万元。求一周内期望利润是多少?参考答案:1 解析 设甲命中目标为事件A,乙命中目标为事件B,丙命中目标为事件C,则目标被击中的事件可以表示为A+B+C,即击中目标表示事件A、B、C中至少有一个发生 故目标被击中的概率为1P()=1答案 A2 解析 E=(1+2+3)=2,E2=(12+22+32)=D=E2(E)2=22= D(3+5)=9E=6 答案 A3 解析 由条件知,的取值为0,1,2,3,并且有P(=0)=, 答案 0.34 解析 因为每组人数为13,因此,每组选1人有C种方法,所以所求概率为P= 答案 5 解 (1)我们把“甲射击一次击中目标”叫做事件A,“乙射击一次击中目标”叫做事件B 显然事件A、B相互独立,所以两人各射击一次都击中目标的概率是P(AB)=P(A)P(B)=0.60.6=0.36答 两人都击中目标的概率是0.36(2)同理,两人各射击一次,甲击中、乙未击中的概率是P(A)=P(A)P()=0.6(10.6)=0.60.4=0.24甲未击中、乙击中的概率是P(B)=P()P(B)=0.24,显然,“甲击中、乙未击中”和“甲未击中、乙击中”是不可能同时发生,即事件A与B互斥,所以恰有一人击中目标的概率是P(A)+P(B)=0.24+0.24=0.48答 其中恰有一人击中目标的概率是0.48 (2)两人各射击一次,至少有一人击中目标的概率P=P(AB)+P(A)+P()B=0.36+0.48=0.84答 至少有一人击中目标的概率是0.84 6 解 (1)因为所在区间上的概率总和为1,所以 (1a+2a)1=1,a=概率密度曲线如图 (2)P(1)=7 解 一元二次方程有实数根0而=P24()=P2P2=(P+1)(P2)解得P1或P2故所求概率为P=8 解 以X表示一周5天内机器发生故障的天数,则XB(5,0.2),于是X有概率分布P(X=k)=C0.2k0.85k,k=0,1,2,3,4,5 以Y表示一周内所获利润,则Y=g(X)=Y的概率分布为 P(Y=10)=P(X=0)=0.85=0.328P(Y=5)=P(X=1)=C0.20.84=0.410P(Y=0)=P(X=2)=C0.220.83=0.205P(Y=2)=P(X3)=1P(X=0)P(X=1)P(X=2)=0.057故一周内的期望利润为 EY=100.328+50.410+00.20520.057=5.216(万元)课前后备注 31、题目 高中数学复习专题讲座:数学归纳法的解题应用高考要求 数学归纳法是高考考查的重点内容之一 类比与猜想是应用数学归纳法所体现的比较突出的思想,抽象与概括,从特殊到一般是应用的一种主要思想方法 重难点归纳 (1)数学归纳法的基本形式设P(n)是关于自然数n的命题,若1P(n0)成立(奠基)2假设P(k)成立(kn0),可以推出P(k+1)成立(归纳),则P(n)对一切大于等于n0的自然数n都成立 (2)数学归纳法的应用具体常用数学归纳法证明 恒等式,不等式,数的整除性,几何中计算问题,数列的通项与和等 典型题例示范讲解 例1试证明 不论正数a、b、c是等差数列还是等比数列,当n1,nN*且a、b、c互不相等时,均有 an+cn2bn 命题意图 本题主要考查数学归纳法证明不等式 知识依托 等差数列、等比数列的性质及数学归纳法证明不等式的一般步骤 错解分析 应分别证明不等式对等比数列或等差数列均成立,不应只证明一种情况 技巧与方法 本题中使用到结论 (akck)(ac)0恒成立(a、b、c为正数),从而ak+1+ck+1akc+cka 证明 (1)设a、b、c为等比数列,a=,c=bq(q0且q1)an+cn=+bnqn=bn(+qn)2bn(2)设a、b、c为等差数列,则2b=a+c猜想()n(n2且nN*)下面用数学归纳法证明 当n=2时,由2(a2+c2)(a+c)2,设n=k时成立,即则当n=k+1时, (ak+1+ck+1+ak+1+ck+1)(ak+1+ck+1+akc+cka)=(ak+ck)(a+c)()k()=()k+1也就是说,等式对n=k+1也成立 由知,an+cn2bn对一切自然数n均成立 例2在数列an中,a1=1,当n2时,an,Sn,Sn成等比数列 (1)求a2,a3,a4,并推出an的表达式;(2)用数学归纳法证明所得的结论;(3)求数列an所有项的和 命题意图 本题考查了数列、数学归纳法、数列极限等基础知识 知识依托 等比数列的性质及数学归纳法的一般步骤 采用的方法是归纳、猜想、证明 错解分析 (2)中,Sk=应舍去,这一点往往容易被忽视 技巧与方法 求通项可证明是以为首项,为公差的等差数列,进而求得通项公式 解 an,Sn,Sn成等比数列,Sn2=an(Sn)(n2) (*)(1)由a1=1,S2=a1+a2=1+a2,代入(*)式得:a2=由a1=1,a2=,S3=+a3代入(*)式得 a3=同理可得 a4=,由此可推出 an=(2)当n=1,2,3,4时,由(*)知猜想成立 假设n=k(k2)时,ak=成立故Sk2=(Sk)(2k3)(2k1)Sk2+2Sk1=0Sk= (舍)由Sk+12=ak+1(Sk+1),得(Sk+ak+1)2=ak+1(ak+1+Sk)由知,an=对一切nN成立 (3)由(2)得数列前n项和Sn=,S=Sn=0 例3是否存在a、b、c使得等式122+232+n(n+1)2=(an2+bn+c) 解 假设存在a、b、c使题设的等式成立,这时令n=1,2,3,有于是,对n=1,2,3下面等式成立122+232+n(n+1)2=记Sn=122+232+n(n+1)2设n=k时上式成立,即Sk= (3k2+11k+10)那么Sk+1=Sk+(k+1)(k+2)2=(k+2)(3k+5)+(k+1)(k+2)2= (3k2+5k+12k+24)=3(k+1)2+11(k+1)+10也就是说,等式对n=k+1也成立 综上所述,当a=3,b=11,c=10时,题设对一切自然数n均成立 学生巩固练习 1 已知f(n)=(2n+7)3n+9,存在自然数m,使得对任意nN,都能使m整除f(n),则最大的m的值为( )A 30B 26C 36D 62 用数学归纳法证明3kn3(n3,nN)第一步应验证( )A n=1B n=2C n=3D n=43 观察下列式子 则可归纳出_ 4 已知a1=,an+1=,则a2,a3,a4,a5的值分别为_,由此猜想an=_ 5 用数学归纳法证明4+3n+2能被13整除,其中nN* 6 若n为大于1的自然数,求证 7 已知数列bn是等差数列,b1=1,b1+b2+b10=145 (1)求数列bn的通项公式bn;(2)设数列an的通项an=loga(1+)(其中a0且a1)记Sn是数列an的前n项和,试比较Sn与logabn+1的大小,并证明你的结论 8 设实数q满足|q|1,数列an满足 a1=2,a20,anan+1=qn,求an表达式,又如果S2n3,求q的取值范围 参考答案 1 解析 f(1)=36,f(2)=108=336,f(3)=360=1036f(1),f(2),f(3)能被36整除,猜想f(n)能被36整除 证明 n=1,2时,由上得证,设n=k(k2)时,f(k)=(2k+7)3k+9能被36整除,则n=k+1时,f(k+1)f(k)=(2k+9)3k+1(2k+7)3k=(6k+27)3k(2k+7)3k=(4k+20)3k=36(k+5)3k2(k2)f(k+1)能被36整除f(1)不能被大于36的数整除,所求最大的m值等于36 答案 C2 解析 由题意知n3,应验证n=3 答案 C3 解析 (nN*)(nN*)、 5 证明 (1)当n=1时,421+1+31+2=91能被13整除(2)假设当n=k时,42k+1+3k+2能被13整除,则当n=k+1时,42(k+1)+1+3k+3=42k+142+3k+2342k+13+42k+13=42k+113+3(42k+1+3k+2)42k+113能被13整除,42k+1+3k+2能被13整除当n=k+1时也成立 由知,当nN*时,42n+1+3n+2能被13整除 6 证明 (1)当n=2时,(2)假设当n=k时成立,即7 (1)解 设数列bn的公差为d,由题意得,bn=3n2(2)证明 由bn=3n2知Sn=loga(1+1)+loga(1+)+loga(1+)=loga(1+1)(1+)(1+ )而logabn+1=loga,于是,比较Sn与logabn+1的大小比较(1+1)(1+)(1+)与的大小 取n=1,有(1+1)=取n=2,有(1+1)(1+推测 (1+1)(1+)(1+) (*)当n=1时,已验证(*)式成立 假设n=k(k1)时(*)式成立,即(1+1)(1+)(1+)则当n=k+1时,,即当n=k+1时,(*)式成立由知,(*)式对任意正整数n都成立 于是,当a1时,Snlogabn+1,当 0a1时,Snlogabn+18 解 a1a2=q,a1=2,a20,q0,a2=,anan+1=qn,an+1an+2=qn+1两式相除,得,即an+2=qan于是,a1=2,a3=2q,a5=2qn猜想 a2n+1=qn(n=1,2,3,)综合,猜想通项公式为an=下证 (1)当n=1,2时猜想成立(2)设n=2k1时,a2k1=2qk1则n=2k+1时,由于a2k+1=qa2k1a2k+1=2qk即n=2k1成立 可推知n=2k+1也成立 设n=2k时,a2k=qk,则n=2k+2时,由于a2k+2=qa2k,所以a2k+2=qk+1,这说明n=2k成立,可推知n=2k+2也成立 综上所述,对一切自然数n,猜想都成立 这样所求通项公式为an=S2n=(a1+a3+a2n1)+(a2+a4+a2n)=2(1+q+q2+qn-1) (q+q2+qn)由于|q|1,=依题意知3,并注意1q0,|q|1解得1q0或0q课前后备注 32、题目 高中数学复习专题讲座:函数的连续及其应用高考要求 函数的连续性是新增加的内容之一 它把高中的极限知识与大学知识紧密联在一起 在高考中,必将这一块内容溶入到函数内容中去,因而一定成为高考的又一个热点 本节内容重点阐述这一块知识的知识结构体系 重难点归纳 1 深刻理解函数f(x)在x0处连续的概念 等式f(x)=f(x0)的涵义是 (1)f(x0)在x=x0处有定义,即f(x0)存在;(2)f(x)存在,这里隐含着f(x)在点x=x0附近有定义;(3)f(x)在点x0处的极限值等于这一点的函数值,即f(x)=f(x0) 函数f(x)在x0处连续,反映在图像上是f(x)的图像在点x=x0处是不间断的 2 函数f(x)在点x0不连续,就是f(x)的图像在点x=x0处是间断的 其情形 (1)f(x)存在;f(x0)存在,但f(x)f(x0);(2)f(x)存在,但f(x0)不存在 (3) f(x)不存在 3 由连续函数的定义,可以得到计算函数极限的一种方法 如果函数f(x)在其定义区间内是连续的,点x0是定义区间内的一点,那么求xx0时函数f(x)的极限,只要求出f(x)在点x0处的函数值f(x0)就可以了,即f(x)=f(x0) 典型题例示范讲解 例1已知函数f(x)=,(1)求f(x)的定义域,并作出函数的图像;(2)求f(x)的不连续点x0;(3)对f(x)补充定义,使其是R上的连续函数 命题意图 函数的连续性,尤其是在某定点处的连续性在函数图像上有最直观的反映 因而画函数图像去直观反映题目中的连续性问题也就成为一种最重要的方法 知识依托 本题是分式函数,所以解答本题的闪光点是能准确画出它的图像 错解分析 第(3)问是本题的难点,考生通过自己对所学连续函数定义的了解 应明确知道第(3)问是求的分数函数解析式 技巧与方法 对分式化简变形,注意等价性,观察图像进行解答 解 (1)当x+20时,有x2因此,函数的定义域是(,2)(2,+)当x2时,f(x)= =x2,其图像如上图(2)由定义域知,函数f(x)的不连续点是x0=2 (3)因为当x2时,f(x)=x2,所以=4 因此,将f(x)的表达式改写为f(x)=则函数f(x)在R上是连续函数 例2求证 方程x=asinx+b(a0,b0)至少有一个正根,且它不大于a+b 命题意图 要判定方程f(x)=0是否有实根 即判定对应的连续函数y=f(x)的图像是否与x轴有交点,因此根据连续函数的性质,只要找到图像上的两点,满足一点在x轴上方,另一点在x轴下方即可 本题主要考查这种解题方法 知识依托 解答本题的闪光点要找到合适的两点,使函数值其一为负,另一为正 错解分析 因为本题为超越方程,因而考生最易想到画图像观察,而忽视连续性的性质在解这类题目中的简便作用 证明 设f(x)=asinx+bx,则f(0)=b0,f(a+b)=asin(a+b)+b(a+b)=asin(a+b)10,又f(x)在(0,a+b内是连续函数,所以存在一个x0(0,a+b,使f(x0)=0,即x0是方程f(x)=0的根,也就是方程x=asinx+b的根 因此,方程x=asinx+b至少存在一个正根,且它不大于a+b 例3已知函数f(x)=(1)讨论f(x)在点x=1,0,1处的连续性;(2)求f(x)的连续区间 解 (1)f(x)=3, f(x)=1,所以f(x)不存在,所以f(x)在x=1处不连续,但f(x)=f(1)=1, f(x)f(1),所以f(x)在x=1处右连续,左不连续f(x)=3=f(1), f(x)不存在,所以f(x)不存在,所以f(x)在x=1不连续,但左连续,右不连续 又f(x)=f(0)=0,所以f(x)在x=0处连续 (2)f(x)中,区间(,1),1,1,(1,5上的三个函数都是初等函数,因此f(x)除不连续点x=1外,再也无不连续点,所以f(x)的连续区间是(,1),1,1和(1,5 学生巩固练习 1 若f(x)=在点x=0处连续,则f(0)等于( )A B C 1D 02 设f(x)=则f(x)的连续区间为( )A (0,2)B (0,1) C (0,1)(1,2)D (1,2)3 =_ 4 若f(x)=处处连续,则a的值为_ 5 已知函数f(x)=(1)f(x)在x=0处是否连续?说明理由;(2)讨论f(x)在闭区间1,0和0,1上的连续性 6 已知f(x)=(1)求f(x);(2)求常数a的值,使f(x)在区间(,+)内处处连续 7 求证任何一个实系数一元三次方程a0x3+a1x2+a2x+a3=0(a0,a1,a2,a3R,a00)至少有一个实数根 8 求函数f(x)=的不连续点和连续区间 参考答案 1 解析 答案 A2 解析 即f(x)在x=1点不连续,显知f(x)在(0,1)和(1,2)连续 答案 C3 解析 利用函数的连续性,即,答案 答案 5 解 f(x)=(1) f(x)=1, f(x)=1,所以f(x)不存在,故f(x)在x=0处不连续 (2)f(x)在(,+)上除x=0外,再无间断点,由(1)知f(x)在x=0处右连续,所以f(x)在1,0上是不连续函数,在0,1上是连续函数 6 解 (1)f(x)=(2)要使f(x)在(,+)内处处连续,只要f(x)在x=0连续,f(x)= =f(x)=(a+bx)=a,因为要f(x)在x=0处连续,只要 f(x)= f(x)= f(x)=f(0),所以a=7 证明 设f(x)=a0x3+a1x2+a2x+a3,函数f(x)在(,+)连续,且x+时,f(x)+;x时,f(x),所以必存在a(,+),b(,+),使f(a)f(b)0,所以f(x)的图像至少在(a,b)上穿过x轴一次,即f(x)=0至少有一实根 8 解 不连续点是x=1,连续区间是(,1),(1,+) 课前后备注 33、题目 高中数学复习专题讲座:导数的运算法则及基本公式应用高考要求 导数是中学限选内容中较为重要的知识,本节内容主要是在导数的定义,常用求等公式 四则运算求导法则和复合函数求导法则等问题上对考生进行训练与指导 重难点归纳 1 深刻理解导数的概念,了解用定义求简单的导数 表示函数的平均改变量,它是x的函数,而f(x0)表示一个数值,即f(x)=,知道导数的等价形式 2 求导其本质是求极限,在求极限的过程中,力求使所求极限的结构形式转化为已知极限的形式,即导数的定义,这是顺利求导的关键 3 对于函数求导,一般要遵循先化简,再求导的基本原则,求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误 4 复合函数求导法则,像链条一样,必须一环一环套下去,而不能丢掉其中的一环 必须正确分析复合函数是由哪些基本函数经过怎样的顺序复合而成的,分清其间的复合关系 典型题例示范讲解 例1求函数的导数 命题意图 本题3个小题分别考查了导数的四则运算法则,复合函数求导的方法,以及抽象函数求导的思想方法 这是导数中比较典型的求导类型 知识依托 解答本题的闪光点是要分析函数的结构和特征,挖掘量的隐含条件,将问题转化为基本函数的导数 错解分析 本题难点在求导过程中符号判断不清,复合函数的结构分解为基本函数出差错 技巧与方法 先分析函数式结构,找准复合函数的式子特征,按照求导法则进行求导 (2)解 y=3,=axbsin2x,=avbyv=x,y=sin =xy=(3)=32=32(avby)=32(avby)=32(avby)=3(axbsin2x)2(absin2x)(3)解法一 设y=f(),=,v=x2+1,则yx=yvvx=f()v2x=f()2x=解法二 y=f()=f()()=f()(x2+1)(x2+1)=f()(x2+1) 2x=f()例2利用导数求和(1)Sn=1+2x+3x2+nxn1(x0,nN*)(2)Sn=C+2C+3C+nC,(nN*)命题意图 培养考生的思维的灵活性以及在建立知识体系中知识点灵活融合的能力 知识依托 通过对数列的通项进行联想,合理运用逆向思维 由求导公式(xn)=nxn1,可联想到它们是另外一个和式的导数 关键要抓住数列通项的形式结构 错解分析 本题难点是考生易犯思维定势的错误,受此影响而不善于联想 技巧与方法 第(1)题要分x=1和x1讨论,等式两边都求导 解 (1)当x=1时Sn=1+2+3+n=n(n+1);当x1时,x+x2+x3+xn=,两边都是关于x的函数,求导得(x+x2+x3+xn)=()即Sn=1+2x+3x2+nxn1=(2)(1+x)n=1+Cx+Cx2+Cxn,两边都是关于x的可导函数,求导得n(1+x)n1=C+2Cx+3Cx2+nCxn1,令x=1得,n2n1=C+2C+3C+nC,即Sn=C+2C+nC=n2n1 例3 已知曲线C y=x33x2+2x,直线l:y=kx,且l与C切于点(x0,y0)(x00),求直线l的方程及切点坐标 解 由l过原点,知k=(x00),点(x0,y0)在曲线C上,y0=x033x02+2x0,=x023x0+2y=3x26x+2,k=3x026x0+2又k=,3x026x0+2=x023x0+22x023x0=0,x0=0或x0=由x0,知x0=y0=()33()2+2=k=l方程y=x 切点(,)学生巩固练习 1 y=esinxcos(sinx),则y(0)等于( )A 0B 1C 1D 22 经过原点且与曲线y=相切的方程是( )A x+y=0或+y=0B xy=0或+y=0C x+y=0或y=0D xy=0或y=03 若f(x0)=2, =_ 4 设f(x)=x(x+1)(x+2)(x+n),则f(0)=_ 5 已知曲线C1:y=x2与C2:y=(x2)2,直线l与C1、C2都相切,求直线l的方程 6 求函数的导数(1)y=(x22x+3)e2x;(2)y= 7 有一个长度为5 m的梯子贴靠在笔直的墙上,假设其下端沿地板以3 m/s的速度离开墙脚滑动,求当其下端离开墙脚1 4 m时,梯子上端下滑的速度 8 求和Sn=12+22x+32x2+n2xn1,(x0,nN*) 参考答案 1 解析 y=esinxcosxcos(sinx)cosxsin(sinx),y(0)=e0(10)=1答案 B2 解析 设切点为(x0,y0),则切线的斜率为k=,另一方面,y=()=,故y(x0)=k,即或x02+18x0+45=0得x0(1)=3, x0 (2)=15,对应有y0(1)=3,y0(2)=,因此得两个切点A(3,3)或B(15,),从而得y(A)= =1及y(B)= ,由于切线过原点,故得切线 lA:y=x或lB:y= 答案 A3 解析 根据导数的定义 f(x0)=(这时)答案 14 解析 设g(x)=(x+1)(x+2)(x+n),则f(x)=xg(x),于是f(x)=g(x)+xg(x),f(0)=g(0)+0g(0)=g(0)=12n=n!答案 n!5 解 设l与C1相切于点P(x1,x12),与C2相切于Q(x2,(x22)2)对于C1 y=2x,则与C1相切于点P的切线方程为yx12=2x1(xx1),即y=2x1xx12对于C2 y=2(x2),与C2相切于点Q的切线方程为y+(x22)2=2(x22)(xx2),即y=2(x22)x+x224两切线重合,2x1=2(x22)且x12=x224,解得x1=0,x2=2或x1=2,x2=0直线l方程为y=0或y=4x46 解 (1)注意到y0,两端取对数,得lny=ln(x22x+3)+lne2x=ln(x22x+3)+2x (2)两端取对数,得ln|y|=(ln|x|ln|1x|),两边解x求导,得7 解 设经时间t秒梯子上端下滑s米,则s=5,当下端移开1 4 m时,t0=,又s= (259t2)(92t)=9t,所以s(t0)=9=0 875(m/s)8 解 (1)当x=1时,Sn=12+22+32+n2=n(n+1)(2n+1),当x1时,1+2x+3x2+nxn-1=,两边同乘以x,得x+2x2+3x2+nxn=两边对x求导,得Sn=12+22x2+32x2+n2xn-1=课前后备注 34、题目 高中数学复习专题讲座:导数的应用问题高考要求 利用导数求函数的极大(小)值,求函数在连续区间a,b上的最大最小值,或利用求导法解决一些实际应用问题是函数内容的继续与延伸,这种解决问题的方法使复杂问题变得简单化,因而已逐渐成为新高考的又一热点 本节内
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 林业割草劳务合同范本
- 分期买车购车合同范本
- 合同范本模板哪个好用
- 网店外包服务合同范本
- 餐饮转租转让合同范本
- 修车的劳务合同范本
- 过敏性紫癜肾脏受累护理查房
- 会计岗位劳务合同范本
- 分红协议合同范本
- 房子租品合同范本
- 除锈剂MSDS参考资料
- 不等式及其基本性质说课课件
- 明渠均匀流计算公式
- 《纯物质热化学数据手册》
- 中国儿童严重过敏反应诊断与治疗建议(2022年)解读
- 电动力学-同济大学中国大学mooc课后章节答案期末考试题库2023年
- 综采工作面液压支架安装回撤工理论考核试题及答案
- 放射科质控汇报
- 2023年山东威海乳山市事业单位招聘带编入伍高校毕业生12人笔试备考题库及答案解析
- 结构方案论证会汇报模板参考83P
- 《企业人力资源管理专业实践报告2500字》
评论
0/150
提交评论