外文翻译--三轴并联铣床的功能仿真器 英文版.pdf

示教型雕铣机设计【机+电】【9张图纸】【优秀】

收藏

压缩包内文档预览:
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:423428    类型:共享资源    大小:1.70MB    格式:RAR    上传时间:2015-04-08 上传人:上*** IP属地:江苏
40
积分
关 键 词:
示教型 雕铣机 设计 图纸 示教型雕铣机
资源描述:

示教型雕铣机设计

33页 11000字数+说明书+外文翻译+9张CAD图纸【详情如下】

A0装配图.dwg

主轴.dwg

外文翻译--三轴并联铣床的功能仿真器 中文版.doc

外文翻译--三轴并联铣床的功能仿真器 英文版.pdf

导轨.dwg

支撑底座.dwg

支撑架.dwg

支架.dwg

滚珠丝杠副.dwg

电路图.dwg

示教型雕铣机设计说明书.doc

论文.doc

轴套.dwg

目录

摘要I

AbstractII

1绪论2

1.1示教型雕铣机课题介绍2

1.2小型示教型雕铣机的特点及现状2

1.2.1 国内数控雕铣机的发展和现状2

1.2.2 典型数控雕铣机的介绍3

1.3示教型雕铣机的主要技术参数5

2示教型雕铣机总体布局设计方案6

2.1机床总体布局设计6

2.2  设计方案分析6

3各轴系统的设计方案8

3.1 Z向主传动系统的方案设计8

3.2  进给系统方案设计8

3.2.1 滚珠丝杠副的选择8

3.2.2  滚珠丝杠的支承结构9

3.2.3  支承轴承的选择10

3.2.4  滚珠丝杠的制动装置10

3.2.5 步进电机与进给丝杠的联结结构10

3.2.6  导轨11

4主轴系统零部件的计算与校核12

4.1 主轴系统的重力计算12

4.2  主轴铣削力计算12

4.3 滚珠丝杠副的选择计算13

4.4  进给伺服电机功率的计算及选择20

5电气部分设计25

5.1 硬件部分电路设计25

5.2 80C51外部电路扩展25

5.3控制系统总体设计26

结论28

致谢29

参考文献30

1绪论

1.1示教型雕铣机课题介绍

随着微电子技术的突飞猛进,直接推动微型计算机的急剧发展。微电子技术和微型计算机技术带动整个高科技群体飞速发展,从而使雕铣机的发展有了质的飞跃。使其完成了从二维到三维加工技术的变革。随着生活水平的不断提高, 人们对产品的性价比也越来越高,这就对雕铣机的研制提出了更苛刻的要求。因此,功能完善,性能稳定,造型美观并且价格合理的产品是我们不懈的追求。

雕铣机引入教学领域,使教与学更生动、有趣,学生更容易接受那些抽象的东西, 便于提高数控技术课程的教学效果。因此,本课题拟设计一款价格低廉,功能完善的雕铣机用于教学演示。

1.2小型示教型雕铣机的特点及现状

示教技术是随着数控技术发展起来的,目前,对示教系统的性能及精度等方面都提出了较高要求。现在市面上的雕铣机主要有以下几特点:

1.应用PC机的强大计算功能,将刀补、译码、插补、加减速控制等放在PC上解决。最后PC上形成的是各种步进电机的控制脉冲。

2.应用PC机的并口直接输出各向步进电机的控制脉冲,以控制工作台的移动。

3.步进电机的驱动采用集成的驱动芯片。

4.通过限位开关以及各运动方向的开关来保证雕铣机的安全工作。

示教型雕铣机是一款模拟经济实用的高精密数控雕铣设备,该款设备主要模拟雕铣机的运动,实现简单的示教雕铣功能。

1.2.1 国内数控雕铣机的发展和现状

随着家具制造业、广告招牌业、模具业的发展,尤其是模具业对表面加工要求的提高,以及传统电火花加工的不足,最近的一两年综合铣削与高速雕刻优点的CNC雕铣机在国内有了较大的发展。

2007年我国的雕铣机产业产能已经超过11000台/年,产值超过15亿RMB。目前雕铣机的生产主要以广东、北京、浙江三大板块主导。国内几家著名的数控机床厂在这个领域里面都有较好的成绩。比如北京精雕、广东佳铁、南京四开、上海洛克等都是国内著名的数控雕铣机厂家。在雕刻CAD/CAM技术、CNC数控技术、精密雕刻机设计技术工艺等领域取得了重大的突破,并真正实现了先进技术向产业化的转化。

1.2.2 典型数控雕铣机的介绍

北京精雕-睿雕系列Carver600G_U

北京精雕生产的睿雕Carver600G_U机械性能参数指标见表1-1。模型见图1-1。

  表1-1 Carver600G_U机械性能参数指标

主要性能指标项标准值

工作台尺寸700×650mm

X、Y、Z轴工作行程600×500×300mm

快速移动速度10m/min

主轴转速2100-24000rpm

最高切削进给速度6m/min

X/Y/Z轴运动定位精度0.008/300mm

X/Y/Z轴重复定位精度0.005mm

机床外形尺寸2042×1890×2144mm

内容简介:
ORIGINAL ARTICLEFunctional simulator of 3-axis parallel kinematicmilling machineMilos Glavonjic&Dragan Milutinovic&Sasa ZivanovicReceived: 12 July 2007 /Accepted: 27 June 2008 /Published online: 24 July 2008#Springer-Verlag London Limited 2008Abstract Parallel kinematic machines (PKM) are research-and-development topic in many laboratories although manyof them, unfortunately, have no PKM at all. Therefore, theuse of low cost but functional simulator of a 3-Axis parallelkinematic milling machine is suggested as a help to acquirethe basic experiences in the PKM field. The idea is based onthe possibility that the simulator could be driven andcontrolled by a conventional 3-Axis Computer NumericalControl machine tool (CNC). The paper describes thedevelopment procedure of a simulator including the selec-tion of a corresponding parallel mechanism, kinematicmodelling, and the programming algorithm. The functionalsimulator idea has been verified by successful making ofsome standardized test pieces of soft material, under fulloperational conditions.Keywords Parallelkinematicmachines.Functionalsimulator.Modellingandtesting1 IntroductionThe strategic importance of education and training, espe-cially in technology and scientific subjects, is growingthroughout the world. This also applies to the parallelkinematic machines (PKMs) which are today research-and-development (R&D) and educational worldwide topic.Basic knowledge about diverse aspects of PKM has beenpublished 1. Many different topologies of parallelmechanisms with 3 to 6 dof, including a 3-dof translationalorthogonal parallel mechanism, have been used 15.Today, unfortunately, the great majority of research insti-tutes, university laboratories, and companies have no PKM.The reason, obviously, is the high cost of education andtraining for a new technology, such as PKM.In order to contribute towards the acquisition of practicalexperiences in modelling, design, control, programming,and the use of PKM, a low cost but functional simulator of3-Axis parallel kinematic milling machine is proposed 2.The idea is based on the possibility that the simulator couldbe driven and controlled by a conventional 3-Axis CNCmachine tool.As the axes of the conventional 3-Axis CNC machineare mutually orthogonal, different 3-dof spatial parallelmechanisms with orthogonal translatory joints may be usedto build the simulator 2, 7.The paper describes the procedure for simulator devel-opment including the selection of a corresponding parallelmechanism, kinematic modelling, and the programmingalgorithm. The idea about the functional simulator wasverified by successful making of some standardized testpieces out of soft materials, made under full operationalconditions.2 Simulators conceptIt would be possible, thanks to the previous knowledgeabout serial kinematic machines and available resourcesfor their programming, to make the simulator as a hybridstructure consisting of driving conventional 3-Axis CNCmilling machine and driven 3-dof spatial parallel mecha-nism. One of the possible concepts of a functional simulatorInt J Adv Manuf Technol (2009) 42:813821DOI 10.1007/s00170-008-1643-xM. Glavonjic (*):D. Milutinovic:S. ZivanovicMechanical Engineering Faculty, University of Belgrade,Kraljice Marije 16,11120 Belgrade, Serbiae-mail: mglavonjicmas.bg.ac.yufor 3D milling of softer materials, shown in Fig. 1, consistsof: Fully parallel 3-dof mechanism with constant strutlengths and linear joints actuated and controlled by theconventional 3-Axis CNC machine. The mechanism isbased on linear DELTA mechanism 6 but withorthogonal linear actuated joints to facilitate itsconnection with XM,YM, and ZMaxes of horizontal orvertical serial kinematic machines. The universalplatform, which always remains parallel with the base,enables the placement of the spindle in three differentorthogonal XP, YP, ZPdirections as shown in Fig. 1.Out of several possible configurations of the mecha-nism, the one with the platform inside the trihedron(XB, YB, ZB) has been selected since it enables easymounting of the parallel mechanism on the serialmachine XMaxis guideways. Serial 2-dof passive mechanism for decoupling serialmachines YMand ZMaxes.In addition to the selection and adjustment of thesimulators mechanism with the chosen serial machine,the following procedures, models, algorithms, and softwarehave to be defined and developed:kinematic modelling of parallel mechanism, i.e., in-verse and direct kinematics, Jacobian matrices, andsingularity analysis,workspace analysis and selection of simulator properdesign parameters,simulator design and manufacturing,Fig. 1 Functional simulator conceptFig. 2 The basic concepts of simulators parallel mechanism814Int J Adv Manuf Technol (2009) 42:813821the procedure and accessories for adjustment ofparallel mechanisms referent points to simplify theprogramming,algorithms and software for simulator programming,the procedure for testing of simulator under workingconditions by machining of various test pieces fromsofter materials.3 On simulator mechanismsAs the axes of the vertical and horizontal 3-Axis CNCserial machines are orthogonal and actuating simulatorsaxes at the same time, it would be the best if 3-dof spatialparallel simulators mechanism has orthogonal translatoryjoints as well. As in serial CNC machines the axes arecoupled, it would be essential, in a general case, to have atleast one 2-dof passive serial mechanism for their decou-pling. The most convenient CNC machine tools for thesimulator are those with movable tool holder and workingtable. In such concepts two out of three axes are coupled sothat one 2-dof serial passive mechanism suffices for theirdecoupling and the actuation of the simulator.Without classification of kinematic structures of hori-zontal and vertical 3-Axis CNC machines, some examplesof 3-dof spatial parallel mechanisms with orthogonaltranslatory joints, which have been considered and usedfor the simulator, are presented in Fig. 2. The shapes oftheir workspaces are shown as well in the figure.The above and similar examples of the mechanism arethe result of the solution variances of the inverse and directkinematic problem of the basic concept illustrated in Fig. 1.The examples of 2-dof passive serial mechanisms usedto decouple the motion of the axes of driving serial CNCmachine are shown in Fig. 3.In some serial CNC machine concepts, their axes may bedirectly used as simulators parallel mechanism translatoryjoints. In such cases, the general concept of the simulatorbased on mechanisms shown in Fig. 2 may be simplified.Figure 4 shows an example of the simplified simulatorwith parallel mechanism without its own joints. The drivingserial CNC machine is a horizontal machining center. Thecorresponding mechanical interfaces connect joint paralle-lograms with decoupled axes of the machining centre. 2-dofserial mechanism decouples machining centers Y and Zaxes.Figure 5 shows the design of a simplified simulator for avertical CNC milling machine with two coupled axes.Simulators mechanism has one own translatory joint while2-dof serial mechanism is also used for decoupling of thevertical CNC milling machine axes.4 Simulator modelling exampleDetailed kinematic analysis of the simulator from Fig. 1, isbased on its geometric model, Fig. 6. As the platform, bymechanisms nature, remains parallel with the base, eachspatial parallelogram, Fig. 1, is represented by one strut.The fact that the coordinate frames, B and P,connected to the base and the platform are parallel and thatthey are, at the same time, parallel with the referent serialmachine coordinate frame M enables generalization ofthe modelling of the entire simulator. This means that it isfeasible to separate the modelling of the parallel mechanismitself, regardless of its mounting on the horizontal orvertical serial machine and the position of the spindle onFig. 3 The examples of serial mechanisms for decoupling of drivingmachines axesFig. 4 The example of the simulator without own translatory jointsInt J Adv Manuf Technol (2009) 42:813821815its platform. Vectors v referenced in frames B and Pare denoted byBv andPv.Vectors defined by simulator parameters:The position vectors of the midpoints Cibetween jointcenters at mobile platform are defined in the frame Pas,PPCi; i 1; 2; 3.The position vector of the tool tip is defined in theframe P asPPT; xTPyTPzTP?T, where zTP ?h.The position vectors of simulators driving axesreference points Riare defined as,BPRi; i 1; 2; 3.Joint coordinates vector:l l1l2l3?T, l1,l2, and l3are scalar variables poweredand controlled by serial CNC machine within the rangeof lmin? li? lmax, whileBaiare unit vectors,Ba11 0 0?T;Ba2 0 1 0?TandBa3 0 0 ? 1?T.World coordinates vector:BPT xTyTzT?Trepresents the programmed positionvector of the tool tip, while x BPOP xpypzp?Trepresents the location of the platform, i.e., the origin Opof the coordinate frame P attached to it. The relationshipbetween these two vectors is obvious since coordinateframes B and P are always parallel, i.e.,BPTBPOPPPT1Other vectors and parameters are defined as shown inFig. 6, whereBwiandBqiare unit vectors while c is fixedlength of joint parallelograms.The relationships between the simulators joint coordi-nates vector l l1l2l3?Tand the serial machine jointcoordinates m x0MyMzM?T, as shown in Fig. 6, are:x0M l3;yM l2;zM ?112On the basis of geometric relations shown in the Fig. 6,the following equations are derived:kBiwiBPOPPBPCi?BPRi3kBiwi lBiai cBqi4By taking the square of both sides in Eq. 4 the followingrelation is derived:c2 k2i l2i? 2liBaikBiwi?5By adoptingPBPCi?BPRi 06in Eq. 3, kinematic modelling is very simplified. In order tofulfill this requirement, specific calibration method, i. e.,setting of reference points Rihas been developed. ByFig. 6 Geometric model of the simulatorFig. 5 Example of a simulator on the vertical CNC milling machine816Int J Adv Manuf Technol (2009) 42:813821substituting other mechanisms parameters in Eq. 5, thesystem of the following three equations is obtainedx2p y2p z2p l21? 2l1xp? c2 0x2p y2p z2p l22? 2l2yp? c2 0x2p y2p z2p l23 2l3zp? c2 08:7from which are derived:inverse kinematic equations asl1 xp?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffic2? y2p? z2pql2 yp?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffic2? x2p? z2pql3 ?zp?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffic2? x2p? y2pq8:8as well asdirect kinematic equations asyp?s6?ffiffiffiffiffiffiffiffiffiffiffiffiffis26?4s5s7p2s5xp s1 s2ypzp s3 s4yp8:9where ares1l21? l222l1;s2l2l1;s3l22? l232l3;s4 ?l2l3;s5 1 s22 s24; s6 2 s1s2 s3s4? l1s2;s7 s21 s23? 2l1s1? c2 l21; lmin? li? lmax;i 1;2;3As it was mentioned, by adjustment of simulatorsmechanism parameters, Eq. 6, the solution of inverse anddirect kinematics is greatly simplified. To satisfy theconditions from Eq. 6 six calibration struts of selectedreferent length were used, Fig. 7. With the use of inverseand direct kinematics solutions with the calibrated strutlengths, the positions of reference points Riof sliders Si, (i=1, 2, 3) are defined and fixed by calibration plain rings,Fig. 7.4.1 The analysis of inverse and direct kinematics solutionsWith the analysis of inverse kinematics variance solutions,Eq. 8, different configurations of parallel mechanism for agiven platform position may be noted:the basic configuration, Fig. 2a, when in the Eq. 8, allsigns before the square root are negative,one of alternative configurations, Fig. 2b, when inEq. 8, all signs before square root are positive,other possible mechanism configurations, when in theEq. 8, signs before the square root are combined.In a similar way, through the analysis of direct kinematicsolution, Eq. 9, different configurations of parallel mecha-nism for given positions of driving axes may be established:the basic configuration, Fig. 2a, corresponding to thecase, when in Eq. 9, there is a positive sign beforesquare root,alternative configurations, Figs. 2c and d, when inEq. 9, there is a negative sign before square root.The basic and alternative configurations shown in Fig. 2may be realized in different ways subject to the structure ofthe driving serial machine.4.2 Jacobian matrices and singularity analysisIn view of the significance of PKM singularity, thisproblem has been analyzed in detail for the mechanismvariant shown in Fig. 2a, used for the development of theFig. 7 Setting of simulators reference pointsInt J Adv Manuf Technol (2009) 42:813821817simulator on horizontal machining center, Fig. 1. Differen-tiating Eq. 8 with respect to the time, Jacobian matrix isobtained asJ 1ypxp?l1zpxp?l1xpyp?l21zpyp?l2?xpzpl3?ypzpl3?126437510As the equations in Eq. 7 are implicit functions of jointand world coordinates, Jacobian matrix may be alsoobtained by their differentiation asJ J?1l? Jx11whereJ?1l121xp?l1001yp?l200?1zpl326437512Jx 2xp? l1ypzpxpyp? l2zpxpypzp l3243513are Jacobian matrices of inverse and direct kinematics.In this way, three different types of singularities can beidentified, e.g., singularities of inverse and direct kinemat-ics as well as combined singularities.With careful analysis of Jacobian matrices determinantsdet J xpl2l3 ypl1l3? zpl1l2? l1l2l3xp? l1?yp? l2?zp l3?14det Jx ?8 xpl2l3 ypl1l3? zpl1l2? l1l2l3?15det Jl ?8 xp? l1?yp? l2?zp l3?16the singularities of inverse and direct kinematics as well ascombined singularity may be noticed.Figure 8 shows these possible simulators singularityconfigurations with corresponding descriptions and equa-tions. As it can be seen from Fig. 8, all singularities are onthe borders of theoretically achievable workspace so that itwould be possible to avoid them easily with adequatedesign solutions and/or mechanical constrains. This meansthat the achievable simulators workspace is smaller thantheoretical workspace. The boundaries of theoretical work-space are on cylinders of radius c whose axes are XB, YB,ZBderived from inverse kinematic Eq. 8 and sphere ofradius c centered in OB, Fig. 8.5 The examples of simulatorsAs it is known in addition to selecting appropriatekinematic topology, the selection of the right geometricdimensions is very important since the performance ishighly influenced by PKM geometric dimensions 1, 8.To select the right dimensions with respect to a givenapplication is a difficult task, and the development ofdesign tools for PKM is still open research 1.The design parameters of simulators shown in Figs. 1, 4,and 5 were adjusted in order to get more adequate shapesand workspace dimensions on the basis of performances ofavailable CNC machines for which simulators wereplanned. The procedure is essentially iterative because indetermination of the basic design parameters the attention ispaid to the possible interferences of structural elements andthe values of det(J) and det(J1) determinants, Eqs. 14, 15,and 16.Fig. 8 Singularity types818Int J Adv Manuf Technol (2009) 42:813821In the geometric model of simulator variant from Fig. 6,it can be seen that workspace dimensions are primarilyaffected by parallelograms length c, as well as to theadequacy of the distance of the mechanism from D3, D3I2,and D3I1 singularities shown in Fig. 8.For available CNC machine for which the simulator wasplanned, parallelograms length c and values joint ofcoordinates l1,2,3minand l1,2,3maxwere analyzed in iterativeprocedure. In each iteration, attention was paid to thepotential design limitations, interferences, as well as to thevalues of det(J) and det(J1), i.e., to the distances fromsingularities.The parameters determined in this way have beenslightly corrected in detailed design of the simulatorprototype shown in Fig. 9. Shape, volume, and position ofachievable workspace for parallelograms length c=850 mmand l1,2,3min=200 mm and l1,2,3max=550 mm are shown inFig. 2a.On the basis of the adopted concepts and designparameters, the first two simulators have been built (Figs. 9and 10).6 Simulator programming and testingThe simulator programming system has been developed ina standard CADCAM environment on PC platform(Fig. 11). It is possible to exchange geometric workpiecemodels with other systems and simulate the tool path.Linear interpolated tool path is taken from the standard CLfile. The tool path may also be generated in some other wayselected by the simulator user. The basic part of the systemconsists of developed and implemented postprocessor,without the use of postprocessor generator. The postpro-cessor contains inverse and direct kinematics, simulatordesign parameters, and algorithm for simulators tool pathlinearization (Fig. 12). Simulators tool path linearization isessential because CNC machines linear interpolation isused as simulators joint coordinates interpolation. In thisway, simulators tool path remains within the tolerance tubeof predefined radius between points Tj1and Tjtaken fromCL file. The long program for CNC machine obtained inFig. 9 Completed simulator from Fig. 1Fig. 10 Completed simulator from Fig. 4Fig. 11 Simulator programming systemInt J Adv Manuf Technol (2009) 42:813821819this way is transferred to CNC machine and can beverified during idle running of the simulator. The motionrange of driving axes has been already checked in thepostprocessor.The testing of the simulator in this phase included:&verification of the system for programming and com-munication, and&cutting tests by machining various test pieces (Fig. 13).7 ConclusionIn order to contribute towards the acquisition of practicalexperiences in modelling, design, control, programming,and the use of PKM, a low cost but functional simulator of3-Axis parallel kinematic milling machine is proposed. Thedeveloped functional simulator of the 3D parallel kine-matic milling machine integrates, as a hybrid system, theexisting technological equipment (CNC machine tools,CADCAM hardware and software) and parallel kinemat-ic mechanism into a comprehensive and sophisticateddidactic facility. The idea about the functional simulatorwas verified by successful making of some standardizedtest pieces out of soft materials, made under fulloperational conditions. Its capabilities and characteristicshave
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:示教型雕铣机设计【机+电】【9张图纸】【优秀】
链接地址:https://www.renrendoc.com/p-423428.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!