已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
圆学子梦想 铸金字品牌温馨提示: 此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。单元评估检测(六)第六章(120分钟160分)一、填空题(本大题共14小题,每小题5分,共70分.把答案填在题中横线上)1.若ab1a.(2)1a1b.(3)|a|b|.(4)a2b2.【解析】特值验证法:令a=-2,b=-1,代入可知(1)不成立.(2)中1a-1b=b-aab0,故(2)成立.(3),(4)显然成立.答案:(1)2.不等式组(x-y+3)(x+y)0,0x4,表示的平面区域的形状是.【解析】由(x-y+3)(x+y)0,得x-y+30,x+y0,或x-y+30,x+y0,且0x4,故所求平面区域为等腰梯形.答案:等腰梯形3.(2015惠州模拟)已知集合A=x|y=lg(x+3),B=x|x2,则AB=.【解析】由y=lg(x+3),得到x+30,即x-3,所以A=(-3,+),因为B=2,+),所以AB=2,+).答案:2,+)4.(2015苏州模拟)设n是正整数,f(n)=1+12+13+1n,经计算可得,f(2)=32,f(4)2,f(8)52,f(16)3,f(32)72.观察上述结果,可得出的一般结论是.【解析】由f(2)=32,f(4)=f(22)2+22,f(8)=f(23)3+22,f(16)=f(24)4+22,f(32)=f(25)5+22,由此推知f(2n)n+22.答案:f(2n)n+225.将正偶数2,4,6,8,按下表的方式进行排列,记aij表示第i行第j列的数,若aij=2014,则i+j的值为.第1列第2列第3列第4列第5列第1行2468第2行16141210第3行18202224第4行32302826第5行34363840【解析】因为2014=16125+27,2014=8252-2,所以可以看作是1252行,再从251行数7个数,也可以看作252行再去掉2个数,也就是2014在第252行第2列.即i=252,j=2,所以i+j=252+2=254.答案:2546.(2015盐城模拟)设变量x,y满足|x|+|y|1,则2x+y的最大值和最小值分别为.【解析】由约束条件|x|+|y|1,作出可行域如图,设z=2x+y,则y=-2x+z,平移直线y=-2x,当经过点A(1,0)时,z取得最大值2,当经过点B(-1,0)时,z取得最小值-2.答案:2,-27.已知关于x的不等式(ax-1)(x+1)0,a1)的图象过区域M的a的取值范围是.【解析】作二元一次不等式组的可行域如图所示,由题意得A(1,9),C(3,8).当y=ax过A(1,9)时,a取最大值,此时a=9;当y=ax过C(3,8)时,a取最小值,此时a=2,所以2a9.答案:2,910.若直线2ax+by-2=0(a0,b0)平分圆x2+y2-2x-4y-6=0,则2a+1b的最小值是.【解题提示】先利用已知条件确定出a,b的关系,再用均值不等式求最小值.【解析】由x2+y2-2x-4y-6=0得(x-1)2+(y-2)2=11,若直线2ax+by-2=0平分圆,则2a+2b-2=0,即a+b=1,所以2a+1b=2(a+b)a+a+bb=3+2ba+ab3+22baab=3+22,当且仅当2ba=ab,且a+b=1,即a=2-2,b=2-1时取等号.答案:3+2211.(2015徐州模拟)设f(x)是定义在R上的增函数,且对于任意的x都有f(2-x)+f(x)=0恒成立,如果实数m,n满足不等式组f(m2-6m+23)+f(n2-8n)3,则m2+n2的取值范围是.【解题提示】由已知不等式组得到m,n的不等式组,利用线性规划解得取值范围.【解析】依题意得-f(n2-8n)=f(2-n2+8n),于是题中的不等式组等价于f(m2-6m+23)3.又函数f(x)是R上的增函数,所以上述不等式组等价于m2-6m+233,即(m-3)2+(n-4)23.注意到m2+n2=m2+n22可视为动点(m,n)与原点间的距离的平方,因此问题可转化为不等式组(m-3)2+(n-4)23表示的平面区域内的所有的点(m,n)与原点间的距离的平方的取值范围,该不等式组表示的平面区域是如图所示的半圆及直线m=3所围成的区域(不含边界),结合图象不难得知,平面区域内的所有的点与原点间的距离的平方应大于原点与点(3,2)间的距离的平方,应小于原点与点(3,4)间的距离再加上2的和的平方,即当m3时,m2+n2的取值范围是(13,49).答案:(13,49)12.已知x,y为正实数,且满足4x+3y=12,则xy的最大值为.【解析】因为12=4x+3y24x3y,所以xy3.当且仅当4x=3y,4x+3y=12,即x=32,y=2时xy取得最大值3.答案:313.(2015北京模拟)某公司一年购买某种货物400吨,每次都购买x吨,运费为4万元/次,一年的总存储费用为4x万元,要使一年的总运费与总存储费用之和最小,则x=.【解析】该公司一年购买货物400吨,每次都购买x吨,则需要购买400x次,又运费为4万元/次,所以一年的总运费为400x4万元,又一年的总存储费用为4x万元,则一年的总运费与总存储费用之和为400x4+4x(万元),400x4+4x160,当1 600x=4x,即x=20时,一年的总运费与总存储费用之和最小.答案:2014.(2015常州模拟)对于30个互异的实数,可以排成m行n列矩形数阵,如图所示的5行6列的矩形数阵就是其中之一.将30个互异的实数排成m行n列的矩形数阵后,把每行中最大的数选出,记为a1,a2,am,并设其中最小的数为a;把每列中最小的数选出,记为b1,b2,bn,并设其中最大的数为b.两位同学通过各自的探究,得出结论如下:a和b必相等;a和b可能相等;a可能大于b;b可能大于a.以上四个结论中,正确结论的序号是(请写出所有正确结论的序号).【解析】由题意可得a的值最小为6,最大为30;而b的值最小为6,最大为26,且在同一个5行6列的矩形数阵中,一定有ab,故正确,而不正确.答案:二、解答题(本大题共6小题,共90分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(14分)(2015潍坊模拟)已知函数f(x)=ax2+x-a,a0,求不等式f(x)1的解集.【解析】f(x)1,即ax2+x-a1,(x-1)(ax+a+1)0,当a=0时,解集为x|x1;当a0时,(x-1)x+1+1a0,因为1-1-1a,所以解集为x|x1或x1;a0时,不等式解集为x|x1或x0,y0,且2x+8y-xy=0,求:(1)xy的最小值.(2)x+y的最小值.【解析】因为x0,y0,2x+8y-xy=0,(1)xy=2x+8y216xy,当且仅当2x=8y时取等号.所以xy8,所以xy64.故xy的最小值为64.(2)由2x+8y=xy,得:2y+8x=1,所以x+y=(x+y)1=(x+y)2y+8x=10+2xy+8yx10+8=18,当且仅当x=2y时取等号.故x+y的最小值为18.17.(14分)观察此表:1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,问:(1)此表第n行的第一个数与最后一个数分别是多少?(2)此表第n行的各个数之和是多少?(3)2015是第几行的第几个数?【解析】(1)此表第n行的第一个数为2n-1,第n行共有2n-1个数,依次构成公差为1的等差数列.由等差数列的通项公式,此表第n行的最后一个数是2n-1+(2n-1-1)1=2n-1.(2)由等差数列的求和公式,此表第n行的各个数之和为2n-1+(2n-1)2n-12=22n-2+22n-3-2n-2.(3)设2015在此数表的第n行.则2n-120152n-1可得n=11.故2015在此数表的第11行,设2015是此数表的第11行的第m个数,而第11行的第1个数为210,因此,2015是第11行的第992个数.18.(16分)(2015无锡模拟)某造纸厂拟建一座平面图形为矩形且面积为200平方米的二级污水处理池,池的深度一定,池的四周墙壁建造单价为每米400元,中间一条隔壁建造单价为每米100元,池底建造单价每平方米60元(池壁厚忽略不计).(1)污水处理池的长设计为多少米时,可使总造价最低.(2)如果受地形限制,污水处理池的长、宽都不能超过14.5米,那么此时污水处理池的长设计为多少米时,可使总造价最低.【解析】(1)设污水处理池的长为x米,则宽为200x米,总造价f(x)=4002x+2200x+100200x+60200=800x+225x+120001600x225x+12000=36000(元),当且仅当x=225x(x0),即x=15时等号成立.即污水处理池的长设计为15米时,可使总造价最低.(2)记g(x)=x+225x(0ax-5当0xax-5化为x2+x-2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 矿山安全生产管理标准操作手册
- 技术创新提升生产力承诺书4篇范文
- 家庭护理服务保障承诺书范文7篇
- 培训机构课程开发与评估流程
- 小学音乐教研活动实施方案
- 中小企业财务报表分析案例集锦
- 销售合同审查标准化流程表核心条款强调版
- 难忘的生日记事回忆9篇
- 小学四年级语文课后辅导作业解析
- 完形填空练习与教学指导
- 医学免疫文献汇报
- 英语语音语调的教学课件
- 绿色企业创建培训课件
- 家长课堂健康与饮食
- 骨科康复护理概述及康复功能评定
- 不确定条件下跨区域应急物资调度优化研究
- (高清版)DB12∕T 1444-2025 博物馆消防安全管理导则
- 建筑工程重大隐患排查整治方案
- 腰椎骨折疑难病例讨论
- 2025年广东省中考数学试卷真题(含答案详解)
- 乡风文明建设课件
评论
0/150
提交评论