




免费预览已结束,剩余62页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
不等式中恒成立问题的解法研究在不等式的综合题中,经常会遇到当一个结论对于某一个字母的某一个取值范围内所有值都成立的恒成立问题。恒成立问题的基本类型:类型1:设,(1)上恒成立;(2)上恒成立。类型2:设(1)当时,上恒成立,上恒成立(2)当时,上恒成立上恒成立类型3:。类型4: 恒成立问题的解题的基本思路是:根据已知条件将恒成立问题向基本类型转化,正确选用函数法、最小值法、数形结合等解题方法求解。一、用一次函数的性质 对于一次函数有:例1:若不等式对满足的所有都成立,求x的范围。解析:我们可以用改变主元的办法,将m视为主变元,即将元不等式化为:,;令,则时,恒成立,所以只需即,所以x的范围是。二、利用一元二次函数的判别式 对于一元二次函数有:(1)上恒成立;(2)上恒成立例2:若不等式的解集是r,求m的范围。解析:要想应用上面的结论,就得保证是二次的,才有判别式,但二次项系数含有参数m,所以要讨论m-1是否是0。(1)当m-1=0时,元不等式化为20恒成立,满足题意;(2)时,只需,所以,。三、利用函数的最值(或值域)(1)对任意x都成立;(2)对任意x都成立。简单计作:“大的大于最大的,小的小于最小的”。由此看出,本类问题实质上是一类求函数的最值问题。例3:在abc中,已知恒成立,求实数m的范围。解析:由,恒成立,即恒成立,例4:(1)求使不等式恒成立的实数a的范围。解析:由于函,显然函数有最大值,。如果把上题稍微改一点,那么答案又如何呢?请看下题:(2)求使不等式恒成立的实数a的范围。解析:我们首先要认真对比上面两个例题的区别,主要在于自变量的取值范围的变化,这样使得的最大值取不到,即a取也满足条件,所以。 所以,我们对这类题要注意看看函数能否取得最值,因为这直接关系到最后所求参数a的取值。利用这种方法时,一般要求把参数单独放在一侧,所以也叫分离参数法。四:数形结合法 对一些不能把数放在一侧的,可以利用对应函数的图象法求解。例5:已知,求实数a的取值范围。解析:由,在同一直角坐标系中做出两个函数的图象,如果两个函数分别在x=-1和x=1处相交,则由得到a分别等于2和0.5,并作出函数的图象,所以,要想使函数在区间中恒成立,只须在区间对应的图象在在区间对应图象的上面即可。当才能保证,而才可以,所以。 由此可以看出,对于参数不能单独放在一侧的,可以利用函数图象来解。利用函数图象解题时,思路是从边界处(从相等处)开始形成的。例6:若当p(m,n)为圆上任意一点时,不等式恒成立,则c的取值范围是( )a、 b、 c、 d、解析:由,可以看作是点p(m,n)在直线的右侧,而点p(m,n)在圆上,实质相当于是在直线的右侧并与它相离或相切。,故选d。 其实在习题中,我们也给出了一种解恒成立问题的方法,即求出不等式的解集后再进行处理。 以上介绍了常用的五种解决恒成立问题。其实,对于恒成立问题,有时关键是能否看得出来题就是关于恒成立问题。下面,给出一些练习题,供同学们练习。练习题:1、对任意实数x,不等式恒成立的充要条件是_。2、设上有意义,求实数a的取值范围.。3、当恒成立,则实数a的范围是_。4、已知不等式: 对一切大于1的自然数n恒成立,求实数a的范围。含参不等式恒成立问题的求解策略“含参不等式恒成立问题”把不等式、函数、三角、几何等内容有机地结合起来,其以覆盖知识点多,综合性强,解法灵活等特点而倍受高考、竞赛命题者的青睐。另一方面,在解决这类问题的过程中涉及的“函数与方程”、“化归与转化”、“数形结合”、“分类讨论”等数学思想对锻炼学生的综合解题能力,培养其思维的灵活性、创造性都有着独到的作用。本文就结合实例谈谈这类问题的一般求解策略。一、判别式法若所求问题可转化为二次不等式,则可考虑应用判别式法解题。一般地,对于二次函数,有1)对恒成立; 2)对恒成立 例1已知函数的定义域为r,求实数的取值范围。解:由题设可将问题转化为不等式对恒成立,即有解得。所以实数的取值范围为。若二次不等式中的取值范围有限制,则可利用根的分布解决问题。例2设,当时,恒成立,求实数的取值范围。解:设,则当时,恒成立oxyx-1当时,显然成立;当时,如图,恒成立的充要条件为:解得。综上可得实数的取值范围为。二、最值法 将不等式恒成立问题转化为求函数最值问题的一种处理方法,其一般类型有:1)恒成立2)恒成立例3已知,当时,恒成立,求实数的取值范围。解:设,则由题可知对任意恒成立令,得而即实数的取值范围为。例4函数,若对任意,恒成立,求实数的取值范围。解:若对任意,恒成立,即对,恒成立,考虑到不等式的分母,只需在时恒成立而得而抛物线在的最小值得注:本题还可将变形为,讨论其单调性从而求出最小值。三、分离变量法若所给的不等式能通过恒等变形使参数与主元分离于不等式两端,从而问题转化为求主元函数的最值,进而求出参数范围。这种方法本质也还是求最值,但它思路更清晰,操作性更强。一般地有:1)恒成立2)恒成立实际上,上题就可利用此法解决。略解:在时恒成立,只要在时恒成立。而易求得二次函数在上的最大值为,所以。 例5已知函数时恒成立,求实数的取值范围。解: 将问题转化为对恒成立。令,则由可知在上为减函数,故即的取值范围为。注:分离参数后,方向明确,思路清晰能使问题顺利得到解决。四、变换主元法处理含参不等式恒成立的某些问题时,若能适时的把主元变量和参数变量进行“换位”思考,往往会使问题降次、简化。例6对任意,不等式恒成立,求的取值范围。分析:题中的不等式是关于的一元二次不等式,但若把看成主元,则问题可转化为一次不等式在上恒成立的问题。解:令,则原问题转化为恒成立()。 当时,可得,不合题意。当时,应有解之得。故的取值范围为。注:一般地,一次函数在上恒有的充要条件为。四、数形结合法数学家华罗庚曾说过:“数缺形时少直观,形缺数时难入微”,这充分说明了数形结合思想的妙处,在不等式恒成立问题中它同样起着重要作用。我们知道,函数图象和不等式有着密切的联系:1)函数图象恒在函数图象上方;2)函数图象恒在函数图象下上方。x-2-4yo-4例7设 , ,若恒有成立,求实数的取值范围. 分析:在同一直角坐标系中作出及 的图象 如图所示,的图象是半圆 的图象是平行的直线系。要使恒成立,则圆心到直线的距离满足 解得(舍去)由上可见,含参不等式恒成立问题因其覆盖知识点多,方法也多种多样,但其核心思想还是等价转化,抓住了这点,才能以“不变应万变”,当然这需要我们不断的去领悟、体会和总结。含参不等式恒成立问题中,求参数取值范围一般方法恒成立问题是数学中常见问题,也是历年高考的一个热点。大多是在不等式中,已知一个变量的取值范围,求另一个变量的取值范围的形式出现。下面介绍几种常用的处理方法。一、 分离参数在给出的不等式中,如果能通过恒等变形分离出参数,即:若恒成立,只须求出,则;若恒成立,只须求出,则,转化为函数求最值。例1、已知函数,若对任意恒有,试确定的取值范围。解:根据题意得:在上恒成立,即:在上恒成立,设,则当时, 所以 在给出的不等式中,如果通过恒等变形不能直接解出参数,则可将两变量分别置于不等式的两边,即:若恒成立,只须求出,则,然后解不等式求出参数的取值范围;若恒成立,只须求出,则,然后解不等式求出参数的取值范围,问题还是转化为函数求最值。例2、已知时,不等式恒成立,求的取值范围。解:令, 所以原不等式可化为:,要使上式在上恒成立,只须求出在上的最小值即可。 二、 分类讨论在给出的不等式中,如果两变量不能通过恒等变形分别置于不等式的两边,则可利用分类讨论的思想来解决。例3、若时,不等式恒成立,求的取值范围。解:设,则问题转化为当时,的最小值非负。(1) 当即:时, 又所以不存在;(2) 当即:时, 又 (3) 当 即:时, 又综上所得:三、 确定主元在给出的含有两个变量的不等式中,学生习惯把变量看成是主元(未知数),而把另一个变量看成参数,在有些问题中这样的解题过程繁琐。如果把已知取值范围的变量作为主元,把要求取值范围的变量看作参数,则可简化解题过程。例4、若不等式对满足的所有都成立,求的取值范围。解:设,对满足的,恒成立, 解得:四、 利用集合与集合间的关系在给出的不等式中,若能解出已知取值范围的变量,就可利用集合与集合之间的包含关系来求解,即:,则且,不等式的解即为实数的取值范围。例5、当时,恒成立,求实数的取值范围。解:(1) 当时,则问题转化为 (2) 当时,则问题转化为综上所得:或五、 数形结合数形结合法是先将不等式两端的式子分别看作两个函数,且正确作出两个函数的图象,然后通过观察两图象(特别是交点时)的位置关系,列出关于参数的不等式。例6、若不等式在内恒成立,求实数的取值范围。解:由题意知:在内恒成立,在同一坐标系内,分别作出函数和观察两函数图象,当时,若函数的图象显然在函数图象的下方,所以不成立;当时,由图可知,的图象必须过点或在这个点的上方,则, 综上得:上面介绍了含参不等式中恒成立问题几种解法,在解题过程中,要灵活运用题设条件综合分析,选择适当方法准确而快速地解题。含参数不等式恒成立问题的解题策略(专题探究)一、教学目标:理解含参不等式恒成立问题特征;能充分利用化归、数形结合、函数和分类讨论等数学思想解决含参不等式恒成立问题;培养学生分析解决综合问题的能力。二、教学方法:启发、探究三、教学过程:通过含参数不等式恒成立问题的求解,通过变式、启发、引导学生探究解题策略,培养学生利用化归、数形结合、函数和分类讨论等数学思想进行解题的意识。例题1:已知不等式对恒成立,求实数的取值范围。变式:已知不等式对恒成立,求实数的取值范围。例题2:已知不等式对恒成立,求实数的取值范围。变式1:已知不等式对恒成立,求实数的取值范围。变式2:已知不等式对恒成立,求实数的取值范围。例题3:当时,不等式恒成立,求实数的取值范围。练习1:已知函数在区间上为减函数,求实数的取值范围。练习2:对于满足的所有实数,求使不等式恒成立的的取值范围。思考:1、若不等式对满足的所有都成立,求实数的取值范围。2、设,若满足不等式的一切实数,能使不等式恒成立,求正实数的取值范围。常见不等式恒成立问题的几种求解策略不等式恒成立问题是近几年高考以及各种考试中经常出现,它综合考查函数、方程和不等式的主要内容,并且与函数的最值、方程的解和参数的取值范围紧密相连,本文结合解题教学实践举例说明几种常见不等式恒成立问题的求解策略,以抛砖引玉。 1 变量转换策略例1 已知对于任意的a-1,1,函数f(x)=ax2+(2a-4)x+3-a0 恒成立,求x的取值范围.解析 本题按常规思路是分a=0时f(x)是一次函数,a0时是二次函数两种情况讨论,不容易求x的取值范围。因此,我们不能总是把x看成是变量,把a看成常参数,我们可以通过变量转换,把a看成变量,x看成常参数,这就转化一次函数问题,问题就变得容易求解。令g(a)=(x2+2x-1)a-4x+3在a-1,1时,g(a)0恒成立,则,得.点评 对于含有两个参数,且已知一参数的取值范围,可以通过变量转换,构造以该参数为自变量的函数,利用函数图象求另一参数的取值范围。2 零点分布策略例2 已知,若恒成立,求a的取值范围.解析 本题可以考虑f(x)的零点分布情况进行分类讨论,分无零点、零点在区间的左侧、零点在区间的右侧三种情况,即0或或,即a的取值范围为-7,2.点评 对于含参数的函数在闭区间上函数值恒大于等于零的问题,可以考虑函数的零点分布情况,要求对应闭区间上函数图象在x轴的上方或在x轴上就行了.3 函数最值策略 例3 已知,若恒成立,求a的取值范围. 解析 本题可以化归为求函数f(x)在闭区间上的最值问题,只要对于任意.若恒成立或或,即a的取值范围为.点评 对于含参数的函数在闭区间上函数值恒大于等于或小于等于常数问题,可以求函数最值的方法,只要利用恒成立;恒成立.本题也可以用零点分布策略求解.4 变量分离策略 例4 已知函数,若在区间上,的图象位于函数f(x)的上方,求k的取值范围.解析 本题等价于一个不等式恒成立问题,即对于恒成立,式子中有两个变量,可以通过变量分离化归为求函数的最值问题. 对于恒成立对于恒成立,令,设,则,即x=1时, k的取值范围是k2.变式 若本题中将改为,其余条件不变,则也可以用变量分离法解.由题意得,对于恒成立对于恒成立,令,设,则,, k的取值范围是k. 点评 本题通过变量分离,将不等式恒成立问题转化为求函数的最值问题,本题构造的函数求最值对学生来说有些难度,但通过换元后巧妙地转化为“对勾函数”,从而求得最值. 变式题中构造的函数通过换元后转化为“二次函数型”,从而求得最值.本题也可以用零点分布策略和函数最值策略求解.5 数形结合策略例5 设函数,若恒有成立,试求实数a的取值范围. 解析 由题意得,令,.可化为,它表示以(2,0)为圆心,2 为半径的上半圆;表示经过定点(-2,0),以a为斜率的直线,要使恒成立,只需所表示的半圆在所表示的直线下方就可以了(如图所示)当直线与半圆相切时就有,即,由图可知,要使恒成立,实数a的取值范围是xyo点评 本题通过对已知不等式变形处理后,挖掘不等式两边式子的几何意义,通过构造函数,运用数形结合的思想来求参数的取值范围,不仅能使问题变得直观,同时也起到了化繁为简的效果.6 消元转化策略 例6 已知f(x)是定义在-1,1上的奇函数,且f(1)=1,若,若对于所有的恒成立,求实数t的取值范围. 解析 本题不等式中有三个变量,因此可以通过消元转化的策略,先消去一个变量,容易证明f(x)是定义在-1,1上的增函数,故 f(x)在-1,1上的最大值为f(1)=1,则对于所有的恒成立对于所有的恒成立,即对于所有的恒成立,令,只要, 点评 对于含有两个以上变量的不等式恒成立问题,可以根据题意依次进行消元转化,从而转化为只含有两变量的不等式问题,使问题得到解决.以上介绍的几种常见不等式恒成立问题的求解策略,只是分别从某个侧面入手去探讨不等式中参数的取值范围。事实上,这些策略不是孤立的,在具体的解题实践中,往往需要综合考虑,灵活运用,才能使问题得以顺利解决。浅谈不等式恒成立问题中心摘要近几年在数学高考试题中经常遇到不等式恒成立问题。在05年高考辽宁、湖北及天津等省均出现此类题型。本文根据高考题及高考模拟题总结了四种常见的解决不等式恒成立问题的方法。法一:转换主元法。适用于一次型函数。法二:化归二次函数法。适用于二次型函数。法三:分离参数法。适用于一般初等函数。法四:数型结合法。中文关键词“不等式”, “恒成立”在近些年的数学高考题及高考模拟题中经常出现恒成立问题,这样的题目一般综合性强,可考查函数、数列、不等式及导数等诸多方面的知识。同时,培养学生分析问题、解决问题、综合驾驭知识的能力。下面结合例题浅谈恒成立问题的常见解法。1 转换主元法确定题目中的主元,化归成初等函数求解。此方法通常化为一次函数。 例1:若不等式 2x1m(x2-1)对满足2m2的所有m都成立,求x的取值范围。 解:原不等式化为 (x21)m(2x1)0 记f(m)= (x21)m(2x1) (2m2) 根据题意有: 即:解之:得x的取值范围为2 化归二次函数法根据题目要求,构造二次函数。结合二次函数实根分布等相关知识,求出参数取值范围。例2:在r上定义运算:xy(1y) 若不等式(xa)(xa)1对任意实数x成立,则 ( )(a)1a1 (b)0a2 (c) (d) 解:由题意可知 (x-a)1-(x+a) 0对xr恒成立记f(x)=x2-x-a2+a+1则应满足(-1)2-4(-a2+a+1)0化简得 4a2-4a-30对满足0x1的所有实数x都成立,求m的取值范围。解:设f(x)=x2-2mx+2m+1本题等价于函数f(x)在0x1上的最小值大于0,求m的取值范围。(1)当m0时,f(x)在0,1上是增函数,因此f(0)是最小值,解 得 m1时,f(x)在0,1 上是减函数,因此f(1)是最小值解 得 m1综合(1)(2)(3) 得 注:当化归为二次函数后,自变量是实数集的子集时,应用二次函数知识解决有时较繁琐。此型题目有时也可转化为后面的法3求解。3 分离参数法在题目中分离出参数,化成af(x) (afmax(x) (aan-1恒成立,求a0的取值范围。解:依题意:3n+(-1)n-12n+(-1)n2na03n-1+(-1)n-22n-1+(-1)n-12n-1a0化简,得 (-1)n32n-1a0-3n-1+(-1)n2n-1 (1)当n=2k-1 kn*时 a0()n-1+ 设g1(n)= ()n-1+ g1(n)在nn* 时且n=2k-1,kn*时是增函数 g1(n)的最小值为g1(1) a0-()n-1+ 设g2(n)=- ()n-1+ g2(n)在nn*且n=2k,kn*时是减函数 g2(n)的最大值为g2(2)0 a00综上可知0a00。设x0(0, ),y=kx+m是曲线y=f(x)在点(x0,f(x0)处的切线方程并设函数g(x)=kx+m()用x0,f(x0),(x0)表示m;()证明:当x(0, )时,g(x)f(x)()若关于x的不等式x2+1ax+b在0, )上恒成立,其中a、b为实数。求b的取值范围及a与b所满足的关系。 本题()应用了此方法。()解:0b1,a0是不等式成立的必要条件。以下讨论设此条件成立。 x2+1ax+b 即x2-ax+(1-b)0对任意x0, )成立的充要条件是a令(x)=ax+b-,于是ax+b对任意x0, )成立的充要条件是(x)0由(x)=a-=0得x= 当0x时,(x) 时,(x) 0,所以,当x时,(x)取最小值。因此,(x)0成立的充要条件是()0。即a 综上,不等式x2+1ax+b对任意x0, 成立的充要条件是 a显然,存在a、b使式成立的充要条件是:不等式有解。解不等式得 因此,式即为b的取值范围,式即为实数a与b所满足的关系。4.数型结合法例7:如果对任意实数x,不等式恒成立,则实数k的取值范围是解析:画出y1=,y2=kx的图像,由图可看出 0k1k=1例8:已知a0且a1,当x(-1,1)时,不等式x2-ax恒成立,则a的取值范围解析:不等式x2-ax x2-画出y1= ax,y2= x2-的图像。由图可看出 a1或10恒成立,满足题意;(2)时,只需,所以,。三、利用函数的最值(或值域)(1)对任意x都成立;(2)对任意x都成立。简单计作:“大的大于最大的,小的小于最小的”。由此看出,本类问题实质上是一类求函数的最值问题。例3:在abc中,已知恒成立,求实数m的范围。解析:由,恒成立,即恒成立,例4:(1)求使不等式恒成立的实数a的范围。解析:由于函,显然函数有最大值,。如果把上题稍微改一点,那么答案又如何呢?请看下题:(2)求使不等式恒成立的实数a的范围。解析:我们首先要认真对比上面两个例题的区别,主要在于自变量的取值范围的变化,这样使得的最大值取不到,即a取也满足条件,所以。 所以,我们对这类题要注意看看函数能否取得最值,因为这直接关系到最后所求参数a的取值。利用这种方法时,一般要求把参数单独放在一侧,所以也叫分离参数法。四:数形结合法 对一些不能把数放在一侧的,可以利用对应函数的图象法求解。例5:已知,求实数a的取值范围。解析:由,在同一直角坐标系中做出两个函数的图象,如果两个函数分别在x=-1和x=1处相交,则由得到a分别等于2和0.5,并作出函数的图象,所以,要想使函数在区间中恒成立,只须在区间对应的图象在在区间对应图象的上面即可。当才能保证,而才可以,所以。 由此可以看出,对于参数不能单独放在一侧的,可以利用函数图象来解。利用函数图象解题时,思路是从边界处(从相等处)开始形成的。例6:若当p(m,n)为圆上任意一点时,不等式恒成立,则c的取值范围是( )a、 b、 c、 d、解析:由,可以看作是点p(m,n)在直线的右侧,而点p(m,n)在圆上,实质相当于是在直线的右侧并与它相离或相切。,故选d。 其实在习题中,我们也给出了一种解恒成立问题的方法,即求出不等式的解集后再进行处理。 以上介绍了常用的五种解决恒成立问题。其实,对于恒成立问题,有时关键是能否看得出来题就是关于恒成立问题。下面,给出一些练习题,供同学们练习。练习题:1、对任意实数x,不等式恒成立的充要条件是_。2、设上有意义,求实数a的取值范围.。3、当恒成立,则实数a的范围是_。4、已知不等式: 对一切大于1的自然数n恒成立,求实数a的范围。函数中恒成立问题解题策略函数的内容作为高中数学知识体系的核心,也是历年高考的一个热点.函数类问题的解决最终归结为对函数性质、函数思想的应用.恒成立问题,在高中数学中较为常见.这类问题的解决涉及到一次函数、二次函数、三角函数、指数与对数函数等函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了积极的作用.恒成立问题在解题过程中有以下几种策略:赋值型;一次函数型;二次函数型;变量分离型;数形结合型.现在我们一起来探讨其中一些典型的问题.策略一、赋值型利用特殊值求解等式中的恒成立问题,常常用赋值法求解,特别是对解决填空题、选择题能很快求得.例1由等式x4+a1x3+a2x2+a3x+a4= (x+1)4+b1(x+1)3+ b2(x+1)2+b3(x+1)+b4 定义映射f:(a1,a2,a3,a4)b1+b2+b3+b4,则f:(4,3,2,1) ( )a.10 b.7 c.-1 d.0略解:取x=0,则 a4=1+b1+b2+b3+b4,又 a4=1,所以b1+b2+b3+b4 =0 ,故选d例2如果函数y=f(x)=sin2x+acos2x的图象关于直线x= 对称,那么a=( ).a.1 b.-1 c . d. -.略解:取x=0及x=,则f(0)=f(),即a=-1,故选b.此法体现了数学中从一般到特殊的转化思想.策略二、一次函数型利用单调性求解给定一次函数y=f(x)=ax+b(a0),若y=f(x)在m,n内恒有f(x)0,则根据函数的图象(线段)(如下图) 可得上述结论等价于),或 ) 可合并定成nmoxynmoxy同理,若在m,n内恒有f(x)2a+x恒成立的x的取值范围.分析:在不等式中出现了两个字母:x及a,关键在于该把哪个字母看成是一个变量,另一个作为常数.显然可将a视作自变量,则上述问题即可转化为在-2,2内关于a的一次函数大于0恒成立的问题.解:原不等式转化为(x-1)a+x2-2x+10在|a|2时恒成立,设f(a)= (x-1)a+x2-2x+1,则f(a)在-2,2上恒大于0,故有:即解得:x3. 即x(,1)(3,+)此类题本质上是利用了一次函数在区间m,n上的图象是一线段,故只需保证该线段两端点均在x轴上方(或下方)即可.策略三、二次函数型利用判别式,韦达定理及根的分布求解对于二次函数f(x)=ax2+bx+c=0(a0)在实数集r上恒成立问题可利用判别式直接求解,即 f(x)0恒成立;f(x)g(a)恒成立,则g(a)f(x)min;若对于x取值范围内的任何一个数,都有f(x)f(x)max.(其中f(x)max和f(x)min分别为f(x)的最大值和最小值)例6.已知三个不等式,要使同时满足的所有x的值满足,求m的取值范围.略解:由得2x3;,构造函数,画出图象,得am(x2-1)对满足2m2的所有m都成立,求x的取值范围。 解:原不等式化为 (x21)m(2x1)0 记f(m)= (x21)m(2x1) (2m2) 根据题意有: 即:解之:得x的取值范围为2 化归二次函数法根据题目要求,构造二次函数。结合二次函数实根分布等相关知识,求出参数取值范围。例2:在r上定义运算:xy(1y) 若不等式(xa)(xa)1对任意实数x成立,则 ( ) (a)1a1 (b)0a2 (c) (d) 解:由题意可知 (x-a)1-(x+a) 0对xr恒成立记f(x)=x2-x-a2+a+1则应满足(-1)2-4(-a2+a+1)0化简得 4a2-4a-30对满足0x1的所有实数x都成立,求m的取值范围。解:设f(x)=x2-2mx+2m+1本题等价于函数f(x)在0x1上的最小值大于0,求m的取值范围。(1)当m0时,f(x)在0,1上是增函数,因此f(0)是最小值,解 得 m1时,f(x)在0,1 上是减函数,因此f(1)是最小值解 得 m1综合(1)(2)(3) 得 注:当化归为二次函数后,自变量是实数集的子集时,应用二次函数知识解决有时较繁琐。此型题目有时也可转化为后面的法3求解。3 分离参数法在题目中分离出参数,化成af(x) (afmax(x) (aan-1恒成立,求a0的取值范围。解:依题意:3n+(-1)n-12n+(-1)n2na03n-1+(-1)n-22n-1+(-1)n-12n-1a0化简,得 (-1)n32n-1a0-3n-1+(-1)n2n-1 (1)当n=2k-1 kn*时 a0()n-1+ 设g1(n)= ()n-1+ g1(n)在nn* 时且n=2k-1,kn*时是增函数 g1(n)的最小值为g1(1) a0-()n-1+ 设g2(n)=- ()n-1+ g2(n)在nn*且n=2k,kn*时是减函数 g2(n)的最大值为g2(2)0 a00综上可知0a00。设x0(0, ),y=kx+m是曲线y=f(x)在点(x0,f(x0)处的切线方程并设函数g(x)=kx+m()用x0,f(x0),(x0)表示m;()证明:当x(0, )时,g(x)f(x)()若关于x的不等式x2+1ax+b在0, )上恒成立,其中a、b为实数。求b的取值范围及a与b所满足的关系。 本题()应用了此方法。()解:0b1,a0是不等式成立的必要条件。以下讨论设此条件成立。 x2+1ax+b 即x2-ax+(1-b)0对任意x0, )成立的充要条件是a令(x)=ax+b-,于是ax+b对任意x0, )成立的充要条件是(x)0由(x)=a-=0得x= 当0x时,(x) 时,(x) 0,所以,当x时,(x)取最小值。因此,(x)0成立的充要条件是()0。即a 综上,不等式x2+1ax+b对任意x0, 成立的充要条件是 a显然,存在a、b使式成立的充要条件是:不等式有解。解不等式得 因此,式即为b的取值范围,式即为实数a与b所满足的关系。4.数型结合法例7:如果对任意实数x,不等式恒成立,则实数k的取值范围是解析:画出y1=,y2=kx的图像,由图可看出 0k1k=1例8:已知a0且a1,当x(-1,1)时,不等式x2-ax恒成立,则a的取值范围解析:不等式x2-ax x2-画出y1= ax,y2= x2-的图像。由图可看出 a1或1m(x2-1)对满足-2m2的所有m都成立,求x的取值范围。 分析:从表面上看,这是一个关于x的一元二次不等式,实质上可看作是关于m的一元一次不等式,并且已知它的解集为2,2,求参数x的取值范围,这是一种“转换主元”的思想方法。 解:原不等式化为(x2-1)m-(2x-1)0 4函数。 解: 例5(1990年上海高考题)设a=x|x-|,b=x|x-3(a+1)x+2(3a+1)0,求使ab的a 的取值范围。 解:易得a=2a,a1.记f(x)=x-3(a+1)x+2(3a+1),则ab当且仅当对xa,f(x)0恒成立 ,其充要条件是f(x)在a上的最大值不大于零。而f(x)在a上的最大值为f(2a)或f(a1)。因而a=-1或1a3.故工的范围为1,3-1.不等式恒成立、能成立、恰成立问题分析及应用一、不等式恒成立问题的处理方法1、转换求函数的最值:(1)若不等式在区间上恒成立,则等价于在区间上,的下界大于a(2)若不等式在区间上恒成立,则等价于在区间上,的上界小于a例1、设f(x)=x2-2ax+2,当x-1,+时,都有f(x)a恒成立,求a的取值范围。例2、已知对任意恒成立,试求实数的取值范围;例3、r上的函数既是奇函数,又是减函数,且当时,有恒成立,求实数m的取值范围.例4、已知函数在处取得极值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学语文单元教学知识结构化设计与复习策略研究
- 机械零件精密制造工艺优化与质量管控
- 2025年新能源行业人才流失原因分析与对策报告
- 声测管注浆施工方案
- 美术培训机构宣讲
- 上海市延安实验初级中学2026届九年级英语第一学期期末监测模拟试题含解析
- 高胆红素血症的护理措施
- 行为管理安全培训
- 2026届石狮七中学英语九年级第一学期期末质量检测试题含解析
- 黑龙江省哈尔滨市松北区2026届化学九年级第一学期期中调研试题含解析
- 画廊与画家签约合同范本
- 值勤岗亭安装方案范本
- 2025-2026冀人版三年级科学上册教学设计(附目录)
- 田径百米教学课件
- 小学劳动教育教学设计案例
- 大模型概念、技术与应用实践 课件 第6章 智能体
- 生物制药技术专业介绍
- 2024年辽宁轨道交通职业学院单招《英语》真题含完整答案详解【易错题】
- 2025年picc置管与维护临床护理实践指南
- 成功销售的八种武器-大客户销售策略
- 2025年浙江省中考科学试题卷(含答案解析)
评论
0/150
提交评论