全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第九章 分 式1、 知识总结(1) 分式及其性质 1、分式 (1)定义:一般的,如果a,b表示两个整式,并且b中含有字母,那么式子叫做分式;其中a叫做分式的分子,b叫做分式的分母。 (2)有理式:整式和分式统称为有理式。 (3)分式=0分子=0,且分母0 (分式有意义,则分母0) (4)最简分式:分子和分母没有公因式的分式。 2、分式的性质 分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变 即: (a,b,m都是整式,且) 分式的性质是分式化简和运算的依据。 3、约分:把一个式子的分子分母的公因式约去叫做约分。 注:约分的结果应为最简分式或整式。 约分的方法: 1)若分子、分母均为单项式:先找分子、分母系数的最大公约数, 再找相同字母最低次幂; 2)若分子、分母有多项式:先把多项式因式分解,再找分子、分母的公因式。 (二)分式运算 1、分式的乘除 1)分式乘法法则:两分式相乘,用分子的积做分子,分母的积做分母;即: 2)分式除法法则:两分式相除,将除式的分子、分母颠倒位置后,与被除式相乘; 即: 3)分式乘方法则:分式的乘方就是分子分母分别乘方。即: , 2、分式的加减 1)同分母分式加减:分母不变分子相加减;即: 2)异分母分式加减:先通分,变为同分母的分式相加减, 即: (三)分式方程1、定义:分母中含有未知数的方程叫做分式方程。2、解法: 1)基本思路:分式方程整式方程 2)转化方法:方程两边都乘以各个分式最简公分母,约去分母。 3)一般步骤:分式方程整式方程解整式方程检验 注: 检验的是必不可缺的关键步骤,检验的目的是看是否有增根存在。(四)分式应用列分式方程解决实际问题的一般步骤:审题设未知数,找等量关系列方程 检验(是否有增根,是否符合题意)得出答案二、分式解题中常用的数学思想和技巧1、已知,求的值。 (整体思想、构造法)2、已知,求的值。 (整体思想、构造法)3、已知,求的值。4、已知,求。 (先得到的值,然后按第1题方法做)5、已知,求的值。 (提示:)6、已知,求的值。 (提示:参数法)7、已知,求的值。 (倒数求值法)8、已知,求的值。 (提示:由得)9、已知,求的值。(提示:消元代入法,把其中一个未知数看成常数,用它表示其它的未知数)10、计算:1) (提示:用字母代替数) 2) (提示:局部通分) 3) (提示:假分式可先变形)三、典题练习1、如果分式的值为0,那么x的值是 。2、在比例式9:5=4:3x中,x=_ 。3、计算:=_ 。4、当分式的值相等时,x须满足 。5、把分式中的x,y都扩大2倍,则分式的值 。(填扩大或缩小的倍数)6、下列分式中,最简分式有 个。7、分式方程的解是 。8、若2x+y=0,则的值为 。9、当为何值时,分式有意义?10、当为何值时,分式的值为零?11、已知分式:当x= 时,分式没有意义;当x= _时,分式的值为0;当x=2时,分式的值为_。12、当a=_时,关于x的方程=的解是x=1。13、一辆汽车往返于相距a km的甲、乙两地,去时每小时行m km,返回时每小时行n km,则往返一次所用的时间是_。14、某班a名同学参加植树活动,其中男生b名(ba)若只由男生完成,每人需植树15棵;若只由女生完成,则每人需植树 棵。15、当 时,分式的值与分式的值互为倒数。16、若方程有增根,则增根是 。17、若,则的值是 。18、已知,求的值。19、已知x+=3,则x2+= _ 。20、已知=3,则分式= 。 21、化简求值 (1)(1+)(1),其中x=; (2),其中x=。22、解方程: (1)=2; (2)。23、已知方程,是否存在的值使得方程无解?若存在,求出满 足条件的的值;若不存在,请说明理由。24、若,且,求、的值。25、小亮在购物中心用12.5元买了若干盒饼干,但他在一分利超市发现,同样的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年武汉大学中南医院门诊部劳务派遣制导医招聘备考题库及完整答案详解一套
- 2026年普定县梓涵明德学校教师招聘备考题库(9名)及参考答案详解
- 会议室开会制度
- 2026年重庆医科大学附属康复医院关于党政办公室党建、宣传干事、医保办工作人员招聘备考题库参考答案详解
- 2026年深圳市龙华区第三实验学校附属善德幼儿园招聘备考题库完整参考答案详解
- 中学教学质量保证措施制度
- 2026年西安交通大学附属小学招聘备考题库附答案详解
- 2026年漯河市城乡一体化示范区事业单位人才引进备考题库及参考答案详解1套
- 2026年重庆护理职业学院(第一批)公开招聘工作人员备考题库及一套完整答案详解
- 中国人民银行所属企业网联清算有限公司2026年度校园招聘26人备考题库及完整答案详解一套
- 2025年昆明市呈贡区城市投资集团有限公司及下属子公司第二批招聘(11人)考试备考题库附答案
- “青苗筑基 浙里建证”浙江省建设投资集团2026届管培生招聘30人备考核心题库及答案解析
- 江苏百校大联考2026届高三语文第一学期期末学业质量监测试题含解析
- 代还按揭协议书
- 广西2025年高等职业教育考试全区模拟测试 能源动力与材料 大类试题及逐题答案解说
- 2026江苏省公务员考试公安机关公务员(人民警察)历年真题汇编附答案解析
- 2025秋沪科版(五四制)(新教材)初中科学六年级第一学期知识点及期末测试卷及答案
- 2026年失眠患者睡眠调理指南
- 2026年盘锦职业技术学院单招职业适应性测试题库及答案详解一套
- 超市冷库应急预案(3篇)
- 2025年10月自考00610高级日语(二)试题及答案
评论
0/150
提交评论