2.32离散型随机变量的方差和标准差.doc_第1页
2.32离散型随机变量的方差和标准差.doc_第2页
2.32离散型随机变量的方差和标准差.doc_第3页
2.32离散型随机变量的方差和标准差.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2.5.2 离散型随机变量的方差和标准差教学目标(1)理解随机变量的方差和标准差的含义;(2)会求随机变量的方差和标准差,并能解决一些实际问题教学重点,难点:理解方差和标准差公式所表示的意义,并能解决一些实际问题教学过程一问题情境甲、乙两个工人生产同一种产品,在相同的条件下,他们生产件产品所出的不合格品数分别用表示,的概率分布如下二学生活动如何比较甲、乙两个工人的技术?我们知道,当样本平均值相差不大时,可以利用样本方差考察样本数据与样本平均值的偏离程度能否用一个类似于样本方差的量来刻画随机变量的波动程度呢?三建构数学1 一般地,若离散型随机变量的概率分布如表所示: 则描述了相对于均值的偏离程度,故,(其中)刻画了随机变量与其均值的平均偏离程度,我们将其称为离散型随机变量的方差,记为或2方差公式也可用公式计算3随机变量的方差也称为的概率分布的方差,的方差的算术平方根称为的标准差,即思考:随机变量的方差和样本方差有何区别和联系?四数学运用1例题:例1若随机变量的分布如表所示:求方差和标准差 0 1 解:因为,所以 ,例2求第节例1中超几何分布的方差和标准差 解:第节例1中超几何分布如表所示:X012345P数学期望,由公式有 故标准差 例3求第节例2中的二项分布的方差和标准差 解:,则该分布如表所示:012345678910由第节例2知,由得 故标准差说明:一般地,由定义可求出超几何分布和二项分布的方差的计算公式:当时,当时,例4有甲、乙两名学生,经统计,他们字解答同一份数学试卷时,各自的成绩在80分、90分、100分的概率分布大致如下表所示:甲分数8090100概率乙分数8090100概率试分析两名学生的答题成绩水平解:由题设所给分布列数据,求得两人的均值如下:,方差如下:由上面数据可知,这表明,甲、乙两人所得分数的平均分相等,但两人得分的稳定程度不同,甲同学成绩较稳定,乙同学成绩波动大2练习:课本五回顾小结:1离散型随机变量的方差和标准差的概念和意义;2离散型随机变量的方差和标准差的计算

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论