高中数学 3.3.1二元一次不等式(组)与平面区域教案(一)新人教A版必修5(1).doc_第1页
高中数学 3.3.1二元一次不等式(组)与平面区域教案(一)新人教A版必修5(1).doc_第2页
高中数学 3.3.1二元一次不等式(组)与平面区域教案(一)新人教A版必修5(1).doc_第3页
高中数学 3.3.1二元一次不等式(组)与平面区域教案(一)新人教A版必修5(1).doc_第4页
高中数学 3.3.1二元一次不等式(组)与平面区域教案(一)新人教A版必修5(1).doc_第5页
免费预览已结束,剩余4页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

3.3二元一次不等式(组)与简单的线性规划问题3.3.1二元一次不等式(组)与平面区域第1课时教学过程推进新课合作探究师 二元一次方程xy10有无数组解,每一组解是一对实数,它们在坐标平面上表示一个点,这些点的集合组成点集(x,y)|xy10,它在坐标平面上表示一条直线.以二元一次不等式xy10的解为坐标的点,也拼成一个点集.如x3,y2时,xy10,点(3,2)的坐标满足不等式xy10.(3,2)是二元一次不等式xy10的解集中的一个元素.我们把二元一次不等式xy10的解为坐标的点拼成的点集记为(x,y)|xy10.请同学们猜想一下,这个点集在坐标平面上表示什么呢?生 xy10表示直线l:xy10右上方的所有点拼成的平面区域.师 事实上,在平面直角坐标系中,所有的点被直线xy10分为三类:在直线xy10上;在直线xy10右上方的平面区域内;在直线xy10左下方的平面区域内.如(2,2)点的坐标代入xy1中,xy10,(2,2)点在直线xy10的右上方.(1,2)点的坐标代入xy1中,xy10,(1,2)点在直线xy10上.(1,1)点的坐标代入xy1中,xy10,(1,-1)点在直线xy10的左下方.因此,我们猜想,对直线xy10右上方的点(x,y),xy10成立;对直线xy10左下方的点(x,y),xy10成立.师 下面对这一猜想进行一下推证.在直线l:xy10上任取一点p(x 0,y 0),过点p作平行于x轴的直线yy0,这时这条平行线上在p点右侧的任意一点都有xx 0,yy0两式相加.xyx 0y 0,则xy1x0y01,p点在直线xy10上,x0y 010.所以xy10.因为点p(x0,y0)是直线xy10上的任意一点,所以对于直线xy10的右上方的任意点(x,y),xy10都成立.同理,对于直线xy10左下方的任意点(x,y),xy10都成立.所以点集(x,y)|xy10是直线xy10右上方的平面区域,点集(x,y)|xy10是直线xy10左下方的平面区域.师 一般来讲,二元一次不等式axbyc0在平面直角坐标系中表示直线axbyc0的某一侧所有点组成的平面区域.由于对在直线axbyc0同一侧的所有点(x,y),实数axbyc的符号相同,所以只需在此直线的某一侧取一个特殊点(x 0,y0),由ax0by0c的正、负就可判断axbyc0表示直线哪一侧的平面区域.当c0时,我们常把原点作为这个特殊点去进行判断.如把(0,0)代入xy1中,xy10.说明:xy10表示直线xy10左下方原点所在的区域,就是说不等式所表示的区域与原点在直线xy10的同一侧.如果c0,直线过原点,原点坐标代入无法进行判断,则可另选一个易计算的点去进行判断.师 提醒同学们注意,不等式axbyc0所表示的区域,应当理解为(x,y)|axbyc0(x,y)|axbyc0.这个区域包括边界直线,应把边界直线画为实线.师 另外同学们还应当明确有关区域的一些称呼.(1)a为直线l右上方的平面区域(2)b为直线l左下方的平面区域(3)c为直线l左上方的平面区域(4)d为直线l右下方的平面区域教师精讲师 二元一次不等式ax+by+c0和ax+by+c0表示的平面区域.(1)结论:二元一次不等式ax+by+c0在平面直角坐标系中表示直线ax+by+c=0某一侧所有点组成的平面区域.把直线画成虚线以表示区域不包括边界直线,若画不等式ax+by+c0表示的平面区域时,此区域包括边界直线,则把边界直线画成实线.(2)判断方法:由于对在直线ax+by+c=0同一侧的所有点(x,y),把它的坐标(x,y)代入ax+by+c,所得的实数的符号都相同,故只需在这条直线的某一侧取一个特殊点(x0,y0),以ax0+by0+c的正负情况便可判断ax+by+c0表示这一直线哪一侧的平面区域,特殊地,当c0时,常把原点作为此特殊点.知识拓展【例1】 画出不等式2xy60表示的平面区域.解:先画直线2xy60(虚线),把原点(0,0)代入2xy6,得060.因2xy60,说明原点不在要求的区域内,不等式2xy60表示的平面区域与原点在直线2xy60的异侧,即直线2xy60的右上部分的平面区域.生 学生课堂练习.(1)xy10.(2)2x3y60.(3)2x5y100.(4)4x3y12.【例2】 画出不等式组表示的平面区域.x3y60表示直线上及其右上方的点的集合.xy20表示直线左上方一侧不包括边界的点的集合.在确定这两个点集的交集时,要特别注意其边界线是实线还是虚线,还有两直线的交点处是实点还是空点.【例3】 画出不等式组表示的平面区域.师 不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分.生 解:不等式x-y+50表示直线x-y+5=0右上方的平面区域,x+y0表示直线x+y=0右上方的平面区域,x3左上方的平面区域,所以原不等式表示的平面区域如右图中的阴影部分.课堂练习作出下列二元一次不等式或不等式组表示的平面区域.(1)x-y+10;(2)2x+3y-60;(3)2x+5y-100;(4)4x-3y-120;(5)如下图:合作探究师 由上述讨论及例题,可归纳出如何由二元一次不等式(组)表示平面区域的吗?生 归纳如下:1.在平面直角坐标系中,平面内的所有点被直线l:x+y-1=0分成三类:(1)直线l上:(x,y)|x+y-1=0;(2)直线l的上方:(x,y)|x+y-10;(3)直线l的下方:(x,y)|x+y-10.对于平面内的任意一点p(x,y)的坐标,代入x+y-1中,得到一个实数,此实数或等于0,或大于0,或小于0.观察到所有大于0的点都在直线l的右上方,所有小于0的点都在直线l的左下方,所有等于0的点在直线l上.2.一般地,二元一次不等式ax+by+c0在平面直角坐标系中表示直线ax+by+c=0的某一侧的所有的点组成的平面区域.直线画成虚线表示不包括边界.二元一次不等式ax+by+c0表示的平面区域是直线ax+by+c=0的某一侧的所有的点组成的平面区域.直线应画成实线.此时常常用“直线定界,特殊点定位”的方法.(当直线不过原点时,常常取原点;过原点时取坐标轴上的点)方法引导上述过程分为五步(思考、尝试、猜想、证明、归纳)来进行,目的是分散难点,层层递进,突出重点,只要学生对旧知识掌握较好,完全可以由学生主动去探求新知,得出结论.课堂小结1.在平面直角坐标系中,平面内的所有点被直线l分成三类:(1)直线l上;(2)直线l的上方;(3)直线l的下方.2.二元一次不等式ax+by+c0和ax+by+c0表示的平面区域.布置作业1.不等式x-2y+60表示的区域在x-2y+6=0的()a.右上方b.右下方c.左上方d.左下方2.不等式3x+2y-60表示的平面区域是()3.不等式组表示的平面区域是()4.直线x+2y-1=0右上方的平面区域可用不等式_表示.5.不等式组表示的平面区域内的整点坐标是_.6.画出(x+2y-1)(x-y+3)0表示的区域.答案:1.b2.d3.b4.x+2y-105.(1,1)6.第2课时教学过程推进新课例题剖析师 【例1】 画出不等式x+4y4表示的平面区域.师 解:先画直线x+4y-40(虚线),把原点(0,0)代入x+4y-4040,因为x+4y-40,说明原点在要求的区域内,不等式x+4y-40表示的平面区域与原点在直线x+4y-4=0的一侧,即直线x+4y-4=0的左下部分的平面区域.师 在确定这两个点集的交集时,要特别注意其边界线是实线还是虚线,还有两直线的交点处是实点还是空点.师 【例2】 用平面区域表示不等式组的解集.师 分析:由于所求平面区域的点的坐标要同时满足两个不等式,因此二元一次不等式组表示的平面区域是各个不等式表示的平面区域的交集,即各个不等式表示的平面区域的公共部分.生 解:不等式y-3x+12表示直线y=-3x+12下方的区域;不等式x2y表示直线上方的区域.取两个区域重叠的部分,下图中的阴影部分就表示原不等式组的解集.师【例3】 某人准备投资1 200万元兴办一所完全中学.对教育市场进行调查后,他得到了下面的数据表格:(以班级为单位)学段班级学生数配备教师数硬件建设/万元教师年薪/万元初中45226/班2/人高中40354/班2/人分别用数学关系式和图形表示上述限制条件.师 若设开设初中班x个,高中班y个,根据题意,总共招生班数应限制在2030之间,所以应该有什么样的限制?生 20x+y30.师 考虑到所投资金的限制,又应该得到什么?生 26x+54y+22x+23y1 200,即x+2y40.另外,开设的班数不能为负,则x0,y0.把上面四个不等式合在一起,得到师 用图形表示这个限制条件,请同学完成.生 得到图中的平面区域(阴影部分).师 例4一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料的主要原料是磷酸盐4吨,硝酸盐18吨;生产1车皮乙种肥料的主要原料是磷酸盐1吨,硝酸盐15吨.现库存磷酸盐4吨,硝酸盐66吨,在此基础上生产这两种混合肥料.列出满足生产条件的数学关系式,并画出相应的平面区域.师 若设x、y分别为计划生产甲、乙两种混合肥料的车皮数,则应满足什么样的条件?生 满足以下条件师 在直角坐标系中完成不等式组(*)所表示的平面区域.生生 课堂练习(1)(2)方法引导上述过程分为思考、尝试、猜想、证明、归纳来进行,目的是分散难点,层层递进,突出重点,只要学生对旧知识掌握较好,完全有可能由学生主动去探求新知,得出正确解答.课堂小结1.处理实际问题,关键之处在于从题意中建立约束条件

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论